60

Chimia 54 (2000) 60–62 © Neue Schweizerische Chemische Gesellschaft ISSN 0009–4293

TADDOLs – from Enantioselective Catalysis to Dendritic Cross Linkers to Cholesteric Liquid Crystals

Dieter Seebach*

Keywords: COST · Chiral auxiliaries · Enantioselective synthesis · Polymer- and SiO₂-bound reagents · TADDOL

When we and others realized in the early eighties [1] that organotitanium compounds $(R'O)_3$ TiR react much more selectively with electrophiles than their conventional Mg and Li counterparts, we immediately searched for suitable chiral alkoxides which would render these reagents enantioselective. One of the first novel alkoxides tested successfully was obtained by addition of excess PhMgBr to the commercial acetonide of tartrate ester, see Fig. 1 (Aryl = Ph, R¹ = R² = Me, X = O, Y = Z = OH). The formidable systematic name was abbreviated as TADDOL, and, over the years, it turned out (i) that this compound could be widely modified by using various aldehydes, ketones, aryl Grignard derivatives, cyclic C₂-symmetrical dicarboxylates for its preparation, (ii) that substitution of the OH groups by other functionalities in the diarylmethanol moieties was feasible, see Fig. 1.

Far beyond the original purpose, TADDOL derivatives emerged as most general chiral auxiliaries in the broadest sense: compounds with the help of which 'chirality can be introduced', *i.e.* enantiopure products (EPC) [4] (or phases) can be prepared (generated) from achiral or racemic precursors, by catalytic, stoichiometric, or even excessive use of the auxiliary which may be the reagent itself, or which may be covalently or noncovalently attached to a reactant. A list of uses is collected in Fig. 2.

Most recently, we have started using immobilized TADDOL derivatives, with excellent results [10–13]. Most remarkably, TADDOLs with dendritic arms (à la Fréchet) and 8 or 16 peripheral styryl groups, when embedded as cross-linkers in

polystyrene, provide a material of unique properties: swelling of the polymer beads is maintained over 20 cycles of application (polymer-bound Ti-TADDOLate for catalytic enantioselective additions of Et_2Zn to PhCHO); the catalytic sites are accessible under diffusion control, and essentially no difference in enantioselectivity or rate is detectable between the monomeric (homogeneous reaction) and the dendritically incorporated polymerbound TADDOLate (heterogeneous conditions), see Fig. 3. Preliminary results with BINOL and Salen ligands which have been incorporated into polystyrene as modified, cross-linking styryl derivatives suggest that the effect observed with TAD-DOLs is a general one [14].

Another effect – most surprising to us – was encountered with controlled-pore-glass (CPG) grafted TADDOLates [13]: The TADDOL was grafted to the surface of microporous silicagel (surface area $350 \text{ m}^2/\text{g}$), and the material silylated (hydrophobization), as shown in Fig. 4. In the first run, the enantioselectivity of our standard reaction (Et₂Zn + PhCHO, mediated by the derived Ti-TADDOLate) was essentially identical to that observed in homogeneous solution (*ca.* 98:2); but, after ten runs it had dropped to 92:8. We dared to wash the material with HCl/ H₂O/Me₂CO, to find that – after washing with distilled water, rigorous drying, and reloading with titanate – the reactivity and enantioselectivity were restored, a process which could be carried out repeatedly!

A comparison of TADDOL with BINOL reveals intriguing similarities in structure and reactivity, but also intrinsic differences. The ease of TADDOL preparation and modification is

*Correspondence: Prof. Dr. D. Seebach Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule ETH Zentrum Universitätstrasse 16 CH-8092 Zürich Tel.: +41 1 632 29 90 Fax: +41 1 632 11 44 E-Mail: seebach@org.chem.ethz.ch

Fig. 1. TADDOL derivatives and analogues from C_2 -symmetrical dicarboxylates, aldehydes or ketones, Grignard reagents, and heteroatomic chlorides or nucleophiles [2] [3].

- [2+1], [2+2], [3+2], [4+2] cycloadditions
- metatheses .

- stoichiometric chiral reagents (cf. protonations, oxidations)
- iodolactonizations
- ene reactions

Fig. 2. Uses of TADDOLs for 'introducing chirality' - in liquid crystals [5], for resolutions [6], in NMR analyses [7], in solid-state reactions (including photochemical processes) [6], as ligands on metals for reactions involving Lewis acidic [8] and other organometallic centers [2][9], and as stoichiometric reagents.

Fig. 3. Comparison of dendritic Ti-TADDOLate in homogeneous solution and embedded in polystyrene by cross-linking suspension polymerization for the standard test reaction Et₂Zn + PhCHO [11].

Fig. 4. SiO₂-bound Ti-TADDOLate may be washed in multiple applications for the standard test reaction, with restoration of activity (not shown here) and enantioselectivity [13]. Obviously, the SiOH-protecting groups (Me₃SiO) are not lost in the washing process (without them, the reaction does not work at all!).

unrivalled by BINOL. On the other hand, the phenolic OH groups of BINOL have a pK_a of *ca.* 10 to successfully complex metal ions such as the lanthanides even in aqueous and other protic media [15], while TADDOL is a much less acidic aliphatic diol, so that it is doomed to fail as ligand for these ions. Various avenues to the synthesis of 'acidic' TADDOL derivatives are being pursued in our laboratory.

- B. Weidmann, D. Seebach, Angew. Chem. 1983, 95, 12; Angew. Chem. Int. Ed. Engl. 1983, 22, 31; D. Seebach, B. Weidmann, L. Widler, in 'Modern Synthetic Methods', Vol. 3, Ed. R. Scheffold, Salle+Sauerländer (Aarau) and J. Wiley and Sons (New York), 1983, p. 217; D. Seebach, A.K. Beck, M. Schiess, L. Widler, A. Wonnacott, Pure & Appl. Chem. 1983, 55, 1807; M.T. Reetz 'Organotitanium Reagents in Organic Synthesis' Springer-Verlag, Berlin Heidelberg, 1986.
- [2] For an early review article on TADDOLs see: R. Dahinden, A.K. Beck, D. Seebach, in 'Encyclopaedia of Reagents for Organic Synthesis', L. Paquette (Ed.-in-Chief), Vol. 3, J. Wiley and Sons, Chichester, 1995, p. 2167. For more recent reports see: D. Seebach, A.K. Beck, Chimia 1997, 51, 293; A.K. Beck, P. Gysi, L. La Vecchia, D. Seebach, Org. Synth. 1999, 76, 12.
- [3] D. Seebach, A.K. Beck, M. Hayakawa, G. Jaeschke, F.N.M. Kühnle, I. Nägeli, A.B. Pinkerton, B.P. Rheiner, R.O. Duthaler, P.M. Rothe, W. Weigand, R. Wünsch, S. Dick, R. Nesper, M. Wörle, V. Gramlich, Bull. Soc. Chim. Fr. 1997, 134, 315; D. Seebach, A. Pichota, A.K. Beck, A.B. Pinkerton, T. Litz, J. Karjalainen, V. Gramlich, Org. Lett. 1999, 1, 55.
- [4] D. Seebach, H.-O. Kalinowski, *Nachr. Chem. Techn.* 1967, 24, 415;
 G. Helmchen, in 'Houben-Weyl: Methods of Organic Chemistry', 4th ed., Stereoselective Synthesis, G. Thieme-Verlag, Stuttgart, New York, 1995, p. 1.

- [5] H.G. Kuball, B. Weiss, A.K. Beck, D. Seebach, *Helv. Chim. Acta* 1997, 80, 2507.
- [6] F. Toda, Synlett 1993, 303; F. Toda, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 1994, 248, 53; F. Toda, H. Takumi, Enantiomer 1996, 1, 29; F. Toda, H. Miyamoto, K. Kanemoto, K. Tanaka, Y. Takahashi, Y. Takenaka, J. Org. Chem. 1999, 64, 2096, and literature cited therein.
- [7] C. von dem Bussche-Hünnefeld, A.K. Beck, U. Lengweiler, D. Seebach, *Helv. Chim. Acta* 1992, 75, 438; F. Toda, K. Tanaka, M. Votani, A. Hayashi, I. Miyakara, K. Hirotsu, J. Chem. Soc., Chem. Commun. 1993, 18, 1413.
- [8] D. Seebach, G. Jaeschke, K. Gottwald, K. Matsuda, R. Formisano, D.A. Chaplin, M. Breuning, G. Bringmann, *Tetrahedron* 1997, 53, 7539, and literature cited therein.
- For two most recent papers see: D.K. Heldmann, D. Seebach, *Helv. Chim. Acta* 1999, 82, 1096; A. Pichota, P.S. Pregosin, M. Valentini, M. Wörle, D. Seebach, *Angew. Chem.* 2000, 112, 157; *Angew. Chem. Int. Ed.* 2000, 39, 153 and references cited therein.
- [10] Review: D. Seebach, P.B. Rheiner, G. Greiveldinger, T. Butz, H. Sellner in *Top. Curr. Chem.*: 'Dendrimers', Vol. 197, Ed. F. Vögtle, Springer Verlag Berlin Heidelberg, **1998**, p. 125.
- [11] D. Seebach, R.E. Marti, T. Hintermann, *Helv. Chim. Acta* 1996, 79, 1710; P.B. Rheiner, H. Sellner, D. Seebach, *Helv. Chim. Acta* 1997, 80, 2027; H. Sellner, D. Seebach, *Angew. Chem.* 1999, 111, 2039; *Angew. Chem. Int. Ed.* 1999, 38, 1918; P.B. Rheiner, D. Seebach, *Chem. Eur. J.* 1999, 5, 3221.
- [12] P.J. Comina, A.K. Beck, D. Seebach, Org. Proc. Res. Dev. 1998, 2, 18.
- [13] A. Heckel, D. Seebach, Angew. Chem. 2000, 112, 165; Angew. Chem. Int. Ed. 2000, 39, 163.
- [14] Hitherto unpublished results of H. Sellner (part of the projected PhD thesis), J. Karjalainen (postdoctoral fellow 1998–1999), ETH Zürich.
- [15] M. Shibasaki, H. Sasai, T. Arai, Angew. Chem. 1997, 109, 1290; Angew. Chem. Int. Ed. Engl. 1997, 36, 1237; S. Kobayashi, Pure Appl. Chem. 1998, 70, 1019.