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Abstract: The present article summarizes the development of two novel and complementary catalytic methods
to access α-chiral aldehydes. A C1-symmetric chiral (P,N) ligand with a structure derived from the ubiquitous
binepine scaffold has been specifically designed for the Pd-catalyzed α-arylation of aldehydes to access indane
derivativeswith awell-definedquaternary stereocenter in high yields andexcellent enantioselectivities. In addition,
a dinuclear palladium hydride catalyst has been synthesized for the isomerization of terminal and trisubstituted
epoxides into aldehydes and ketones respectively. Combined experimental and theoretical investigations pointed
to an unprecedented ‘epoxide-opening/hydride-transfer’ sequence. The mechanism also features two distinct
enantio-determining steps in the kinetic resolution of racemic epoxides.
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1. Introduction

Among other research activities, a large
part of our program is currently aimed at
developing innovative and complemen-
tary catalytic methods using well-defined
organometallic complexes to access chiral
aldehydes. Our initial motivation stems
from the high prevalence of aldehydes as
essential building blocks in synthesis and/
or as a key function in biologically active
compounds. Although aldehydes are usu-
ally associated with food additives and
important fragrances, they are also often
found as pivotal intermediates in the syn-
thesis of complex molecular architectures
with applications in medicinal, pharma-
ceutical or even material sciences.[1] On
the other hand, the versatile reactivity of
the aldehyde functionality is intimately
associated with its relative instability.
Hence, at the outset of our investigations,
we postulated that devising catalytic meth-
ods that would be tolerant to this peculiar
oxidation state of the carbon atom may, in
turn, be highly functional group tolerant as
they would be compatible with more ro-
bust functional groups. Embarking in this
direction we also anticipated that we will
certainly be confronted with more funda-
mental mechanistic questions that might

be worth deciphering using the most re-
cent practical and theoretical tools of the
physical-organic chemist.

Previous methods developed in our
group to access chiral aldehydes include the
iridium-catalyzed isomerization of prima-
ry allylic alcohols (β-chiral aldehydes),[2]
the sequential iridium/enamine catalysis
using the same substrates and diverse elec-
trophiles (α,β-chiral aldehydes)[3] and the
iridium catalyzed-hydroboration of termi-
nal α-olefins followed by successive oxi-
dations (α-chiral aldehydes).[4] These have
already been discussed in a previous issue
of this journal.[5] In the present article, we
summarize the development of two addi-
tional and complementary methods that
were specifically devised to gain access to
α-chiral aldehydes possessing either a ter-
tiary or a quaternary (stereo)center.

2. Pd-Catalyzed α-Arylation of
Aldehydes

The palladium-catalyzed enantioselec-
tive α-arylation of carbonyl compounds
has advanced at an impressive pace since
the seminal report fromMusco and Santi in
1992.[6] Challenges in this field are three-
fold.[7]

i) Tertiary α-chiral carbonyls obtained
from linear substrates tend to rapidly
epimerize under the necessary basic con-
ditions. Advances in this direction have
recently appeared in the literature for the
α-arylation of pre-activated esters under
mildly basic reaction conditions, though
ample room remains for further improve-
ments.[8]
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difficult substrates as they lack a large vici-
nal substituent (−H vs. −R, −OR or −N(R1)
R2) that may constructively interact with
the chiral catalyst during the enantioselec-
tion process.

The generic structure of the chiral (P,N)
ligand we designed for the α-arylation of
aldehydes is presented in Scheme 1.[13] It
distinguishes itself by a highly modular
scaffold possessing three elements of chi-
rality: i) the axial chirality of the elemen-
tary binepine core;[14] ii) a central chirality
at a benzylic position; iii) a phosphorus
stereogenic center. The latter two elements
are stereoselectively installed by introduc-
tion of the methylpyridyl unit according to
a strategy already employed by Wildhalm
and Zhang.[15] Nine different ligands were
initially synthesized in acceptable to good
overall yields. Substituents with various
steric and electronic demands were intro-
duced at the phosphorus atom and the or-
tho position of the pyridyl ring.

Optimizations of the reaction condi-
tions (1.2 equiv. Cs

2
CO

3
, 80 °C,DMF, 48 h)

were performed using 4-(2-bromophenyl)-
2-methylbutanal 2a as a model substrate
and ligand (R

a
,R,R

P
)-1e (75% yield, 96%

ee) (Scheme 2, top). While bromoarenes
underwent cyclization, aryl chlorides and
iodides failed to react. Evaluation of all
other members of this new ligand class
indicated that (R

a
,R,R

P
)-1i was clearly out-

standing in terms of reactivity and selectiv-
ity.With this candidate, a variety of indane
derivatives was obtained in consistently
high yield and enantioselectivity (9 exam-
ples, 51−99% yield, 35−99% ee). Primary
alkyl α-substituents were well tolerated
whereas secondary alkyls had a detrimen-
tal effect on both the reactivity and the
selectivity. The system proved insensitive
to variations of the electronic properties of
the bromoarenes moiety. More interesting-
ly, the use of a dibrominated substrate 2h
resulted in product formation in excellent
yield and nearly perfect enantioselectiv-
ity (87% yield, 99% ee) and, remarkably,
the second bromine atom remained intact
in the cyclized product. This observation
is consistent with reversible oxidative
addition of Pd(0) intermediates into the
carbon-halogen bond and was further sub-
stantiated by engaging the product in other
C−C bond forming processes using vari-
ous electrophiles under otherwise identical
reaction conditions. Such an observation is
rare in Pd-catalyzed cross-coupling reac-
tions and had not been documented in the
context of asymmetric catalysis.[16]

A real breakthrough in the enantio-
selective α-arylation of carbonyl com-
pounds would consist in developing in-
termolecular variants of these transforma-
tions.[17] Preliminary results obtained with
(R

a
,R,R

P
)-1i in the cross-coupling between

2-methyl-3-phenylpropanal and 4-bro-

ii) α-Branched substrates are not con-
fronted with the issue of post-reaction
epimerization but instead face the inherent
difficulties associated with forging quater-
nary stereocenters.[9]

iii) The nature of the carbonyl com-
pounds imparts an additional challenge
directly related to the reactivity and sta-
bility of the C=O double bond. Hence,
not surprisingly, examples of asymmetric
α-arylation of amides or esters are numer-
ous whereas ketones have been much less

employed.[10] More importantly, at the
beginning of our investigations, a single
example of Pd-catalyzed asymmetric
α-arylation of α-branched aldehydes had
been reported.[11] In addition to the sen-
sitivity of the aldehyde functionality, the
basic conditions required for cross-cou-
pling may favor numerous undesired side-
reactions such as self-aldol condensations,
Cannizzaro or Tishchenko disproportion-
ations.[7,12] Furthermore, from a stereose-
lective point of view, aldehydes are more
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ating in sequence.A pathway that accounts
for partial racemization of the enantio-en-
riched aldehyde in presence of the Pd−H
catalyst and that lies off the productive
catalytic cycle was also identified.

Although far from practicality, the pre-
liminary results obtained using commer-
cially available chiral bisphosphine ligands
clearly set a precedent that will serve as a
stepping-stone for further developments of
a more efficient asymmetric isomerization
of terminal epoxides to access chiral alde-
hydes with a α-tertiary stereocenter.

4. Conclusions

The present article summarizes the de-
velopment of two novel and complemen-
tary catalytic methods to access α-chiral
aldehydes. A novel C

1
-symmetric chiral

(P,N) ligand with an original structure de-
rived from the ubiquitous binepine scaf-
fold has been specifically designed for the
Pd-catalyzed α-arylation of aldehydes.
This reaction generates indane derivatives
with a well-defined quaternary stereocen-

moanisole further highlight the difficulty
associated with this task (Scheme 2, bot-
tom).

3. Isomerization of Terminal
Epoxides

As emphasized above, the enantiose-
lective α-arylation of linear carbonyl de-
rivatives in general and of aldehydes in
particular remains a formidable challenge.
Although work in this direction is current-
ly on-going in our laboratory, we have also
tackled this issue from a rather different
angle.[18]

We identified the isomerization of ter-
minal epoxides (Scheme 3) as a potentially
very attractive alternative method to access
α-chiral aldehydes with a tertiary stereo-
center. In principle, starting from readily
accessible substrates, the isomerization of
epoxides enables direct access to the corre-
sponding carbonyl derivatives. Despite its
occasional implementation in synthesis,
this reaction suffers from several limita-
tions.[19] Super-stoichiometric amounts of
reagents rather than well-defined catalysts,
unpredictable reaction outcome, plethora
of side-reactions, high substrate specific-
ity and an ill-defined mechanistic picture
have prevented widespread use of this
method. Examples of stereospecific isom-
erizations of epoxides are very rare and
have been described only for trisubstituted
epoxides.[20] Furthermore, although the
kinetic resolution of racemic 2,3-disubsti-
tuted and trisubstituted epoxides has been
documented, the main focus was to access
either enantioenriched epoxides or enan-
tioenriched allylic alcohols. In spite of the
aforementioned shortcomings, we initially
set out to develop an asymmetric version
of this transformation to access enantioen-
riched α-chiral aldehydes.

Our approach was inspired by the con-
tribution of Bunel and co-workers who
had described the use of well-defined
Pd−H catalysts for the related isomeriza-
tion of terminal olefins.[21] More impor-
tantly, Kulawiec and co-workers had also
reported the highly selective isomerization
of 2-methyl-2-(2-naphthyl)-oxirane with
a combination of Pd(OAC)

2
and PPh

3
.[22]

This precedent constituted a rare example
of a catalytic isomerization of terminal
epoxides, though it turned out to proceed
exclusively for this substrate and required
the use of a protic solvent – a detrimental
parameter in view of developing an asym-
metric version of this reaction as it favors
rapid enolization.

During re-optimization of the condi-
tions initially reported by Kulawiec to
develop a widely applicable protocol, we
identified a novel dinuclear Pd–H complex
4 which proved competent in the selective

isomerization of terminal and trisubsti-
tuted epoxides into aldehydes and ke-
tones respectively (1−6 mol% [Pd], THF,
85−140 °C, 4−24 h). The functional group
tolerance of the method was delineated and
aryl halides (6k−n), alkoxy groups (6o,p)
ester (6s), cyano (6t), alkynes (6u), alkenes
(6v), as well as ketones (6z) were all toler-
ated and the corresponding products were
isolated in practical to excellent yields
(Scheme 4). Although the method was
initially designed as an alternative to the
α-arylation of linear aldehydes, substrates
containing two alkyl substituents in the
α-position were also isomerized efficiently
(6q, 6r, 6v, 6z).

A series of experimental investigations
− which were further corroborated by DFT
calculations − pointed to an unprecedent-
ed hydride-type mechanism (Scheme 5).
Preliminary results obtained in the kinetic
resolution of terminal epoxides (stereodi-
vergent) and in the isomerization of en-
antioenriched 2-methyl-2-phenyloxirane
(94% ee) into racemic 2-phenylpropanal
(stereoconvergent) revealed that two dis-
tinct enantio-determining steps were oper-
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ter. High yields and excellent enantiose-
lectivities have been obtained for the intra-
molecular variant of this transformation.
A reversible oxidative addition of Pd(0)
into aryl-bromine bond was also observed.
To complement this strategy, a unique
dinuclear palladium hydride catalyst has
been synthesized for the isomerization
of terminal and trisubstituted epoxides
into aldehydes and ketones respectively.
Combined experimental and theoretical
investigations pointed to an unprecedent-
ed ‘epoxide-opening/hydride-transfer’
mechanistic sequence. Preliminary ob-
servations also revealed that two distinct
enantio-determining steps were operating
consecutively for the kinetic resolution of
racemic epoxides.A pathway that accounts
for partial racemization of the enantio-en-
riched aldehyde and that lies off the pro-
ductive catalytic cycle was also identified.
These results clearly set a precedent for
further developments of a more practical
asymmetric isomerization of terminal ep-
oxides. Current efforts are directed toward
improving the efficiency of these catalytic
processes to access synthetically valuable
α-chiral aldehydes.
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