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Abstract: Humanity currently sees itself facing enormous economic, ecological, and social challenges. Sustainable
products and production in specialty chemistry are an important strategic element to address these megatrends.
In addition to that, digitalization and global connectivity will create new opportunities for the industry. One aspect
is examined in this paper, which shows the development of comprehensive analysis of production networks for
a more sustainable production in which the need for innovative solutions arises. Examples from data analysis,
advanced process control and automated performance monitoring are shown. These efforts have significant
impact on improved vyields, reduced energy and water consumption, and better product performance in the
application of the products.
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1. Introduction

Humankind currently sees itself facing
enormous economic and social changes
which are represented in global mega-
trends like urbanization, globalization,
resources and energy consumption, efc.
Therefore, tremendous challenges in pro-
tecting the ecological system are created.
The specialty chemicals industry has to
provide a decisive contribution to the suc-
cessful management of these global chal-
lenges by an efficient use of resources and
energy.[l:2l Innovative solutions from this
industrial sector are leading to a signifi-
cant contribution to sustainability in their
applications. New raw materials based on
biological feedstocks and innovative pro-
cess technologies are developed in order to
increase resource efficiency and to reduce
the carbon footprint of the next genera-
tion’s products and processes.B!

Chemical companies have published
their sustainability policy and defined en-
vironmental targets for 2025, for example
as set out by Clariant in Fig. 1.

*Correspondence: Dr. J. Appel?

E-mail: joerg.appel@clariant.com

aClariant Produkte (Deutschland) GmbH,

84508 Burgkirchen, Germany

°Clariant Prodotti Italia, 20037 Novara, ltaly

Clariant International AG, 4132 Muttenz, Switzerland
dClariant Produkte (Deutschland) GmbH,

65929 Frankfurt, Germany

Besides these step changing innova-
tions, it is a strategic goal of chemical
companies like Clariant!*l to incrementally
improve their existing production assets
for higher chemical yields and lower en-
ergy and water consumption. The regional
supply of specialty chemicals adapted to
local customer needs is performed in a
global production network. Optimizing
these networks is a complex task and re-
quires a well-organized approach in which
best practices are shared and transferred
throughout the network. This requires a
thorough analysis and a clear definition
of the best approaches based on key per-
formance indicators, which represent a
plant’s operation in a balanced and robust
way, avoiding an optimization to a local
optimum.

Through these analyses and the rep-
resentation of the plant’s performance

in terms of resource efficiency, existing
performance gaps are visible even for the
current existing best practice. Innovative
improvements in plant control and moni-
toring are promising opportunities to fur-
ther improve the sustainability of existing
production plants. Digitalization, which
is developing at a rapid pace, and further
developments in sensor technologiesl!
are creating new platforms for innovative
solutions in performance monitoring and
model-based plant control.

In the following chapters we describe
the overarching approaches for process
analysis via the use of big data analysis
towards the implementation of advanced
process control. With this comprehensive
approach Clariant is developing its global
production network into an eco-friendly
and sustainable system.

Reduce Energy Consumption
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Fig. 1. Clariant’s environmental targets 2025 are seen as a driver for sustainability and growth. !
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2. Process Analysis in Global
Production Networks

2.1 YEE (Yield - Energy -
Environment)

Analyzing a global network of dif-
ferent production sites requires dedica-
tion, expertise and the right methodology.
Therefore, Clariant decided to build-up
a dedicated team for the analysis of pro-
duction plants with a focus on improving
yield and energy consumption as well as
reducing the impact on the environment.
The analysis follows a two-step approach
whereby the YEE specialists perform an
intensive diagnostics of potential improve-
ment areas together with the chemical en-
gineering expert and the operations team.
An important success factor of this work
is the personal presence of the experts in
the plant to get the information first hand.
After the identification of improvement
potentials, an implementation phase starts,
in which the operations team realizes the
optimization together with dedicated im-
provement project managers.

During the last four years, high ben-
efit potential has been diagnosed in about
25 plants in 15 different production sites,
which resulted in more than 600 im-
provement measures. A large extent of
these measures has already been realized.
Corresponding significant benefit has al-
ready been realized and tracked in a com-
prehensive database. However, apart from
the financial impact, there is a positive im-
pact on the environment as well. Using less
raw material, consuming less energy and
reducing emissions and waste are directly
linked to Clariant’s sustainability policy
and essential to reach Clariant’s environ-
mental targets.

The initiative started with diagnostics
of a large continuous plant and was then
performed in multiproduct batch produc-
tions located similarly at many different
sites globally. Savings result particularly
from yield improvement and energy effi-
ciency. In principle these potentials are de-
fined as losses compared to a potential op-
timum. They are classified in operational
and design losses. Scale-up effects can be
seen as an additional contribution to yield
losses. The principle form of a yield loss
bridge is illustrated in Fig. 2.

Fig. 3 shows the result of one of those
detailed analyses as a long bridge of opera-
tional losses. Some of these losses can be
solved by adapting the design of the cor-
responding apparatus. The choice of the
right apparatus and the proof of the new
process have to be demonstrated on pilot
scale or even in a production trial. This is
realized by process engineering experts
who are also involved in the implementa-
tion project teams.

Chemical Transfer laboratory Process order
feasibility process to plant variances
(scale-up)
100% =
"
L e | .
Theoretical Yield Bill of Actual yield
chemical achieved in materials
yield laboratory (BOM) in
production
Laboratory Scale-up SAP Plant R
Design Losses Operational losses
Fig. 2. Generic loss bridge from a YEE analysis.
Having this portfolio of ideas and po- tinuous improvement projects. Special

tential improvements, the realization is
carried out taking into account the effort
for the individual improvement measures.

Yield improvements in sold out pro-
duction lines have double impact on ben-
efits. On top of material savings, additional
production volumes enable growth and
generate additional margin.

In the area of energy, there is a close
collaboration with the internal Competence
Center Energy & Utilities. The YEE team
and the energy experts jointly conduct
diagnostics. Areas of improvements are
identified by a trend analysis of the spe-
cific energy consumption. Specific values
are most often related to production vol-
umes. Internal benchmarking by identify-
ing the best demonstrated practice (BDP)
is also used to access untapped potential.[6]
Minimum BDP target after a YEE diag-
nostics is usually the reliable achievement
of the best 25% range (> third quartile) of
yield and specific energy consumption etc.
observed in the last few years. Afterwards,
these figures have to be improved by con-

kinds of continuous improvements could
be the installation of an advanced control
and monitoring system. In sections 2 and 3,
we will come back to the application and
a further development of the best demon-
strated practice curves. Fig. 4 shows one
example of a best demonstrated practice
curve. Here the steam consumption per
production throughput is shown.

It is obvious that the specific energy
consumption is a function of the load of
the plant. The best demonstrated practice
curve shows which energy consumption
the plant had already realized in the past. It
does not however give an explanation how
these optimal operating points have been
reached. The curve helps to estimate how
big the benefit could be if the operations
team would search for the reason which
will result in generally lower energy con-
sumption.

Throughout the diagnostics and the
implementation of the optimizations best
practices are collected and then summa-
rized in so-called Blue Prints, which are
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Fig. 3. Detailed loss bridge from a real site diagnosis.
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Specific Steam Consumption [kg/t]
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Fig. 4. Load specific energy consumption as function of steam consumption per ton of product
produced. The orange curve indicates the BDP curve.

descriptions and instructions for optimum
solutions. These procedures are then pub-
lished to relevant sites all over the world in
order to reach a scalability of the approach
in the company.

Frequently, yield and energy are direct-
ly linked. Solvent losses can be reduced for
instance by an appropriate cooling system.
Yield can be improved through more in-
tense cooling due to higher selectivity of
the reaction. In these cases, the YEE team
helps to quantify the impact and calculates
the net benefit. Through this holistic ap-
proach, the overall economical optimum
is identified. Multidimensional models
derived from process data analysis serve
as the mathematical representation for this
optimization.

Yield improvements also immediately
impact the environmental situation through
reducing waste and emissions. The YEE
team also looks at water consumption as
water is becoming a more and more scarce
natural resource. Water consumption is
thus a key parameter in Clariant’s envi-
ronmental targets 2025. YEE will support
the achievement of the ambitious sustain-
ability targets by diagnostics of the current
situation and ideations for improvements.

The number of YEE projects has sig-
nificantly increased during the last three
years and this allows increasing global
benchmarking at comparable production
technologies. There are many activities
also beyond the YEE team to which opera-
tion teams across the globe and all busi-
ness units and sites are contributing. There
is definitely still a lot of potential which
needs to be identified and tackled to reach
the environmental targets. It is increasingly
necessary to go deeper into technical detail
and broader along the value chain during
the analysis. The YEE approach is there-
fore included in an integrated end-to-end
view of the value chain. Optimizing inter-

faces between different responsibility ar-
eas would probably provide the most gains
and most of the future benefits.

Performing analysis over long value
chains and considering the effect of inter-
faces will increase the amount of data tre-
mendously. Therefore, it is crucial to have
an efficient data handling system in place
and to be able to extract significant infor-
mation from the data. Data infrastructure,
the capability to analyze and interpret the
data and the acceptance of the methodolo-
gies are the three pillars for a successful
application of data mining in the future
process optimization activities.!’]

2.2 Innovative Data Management
and Big Data Analytics

The analysis of chemical processes in a
global network of production units allows
the generation of a chemical processes
landscape, best practice approaches and al-
so an overview of the data structure around
the different plants. This gives an overview
of the availability of process relevant data
for improvement projects. It also shows
where the infrastructure is not sufficient-
ly developed for the application of novel
technologies from the field of digitaliza-
tion. In general, it has to be distinguished
which kind of installation is the next best
step towards a higher data integration in
production. Parallel to the data availability
the acceptance of the technologies in the
work force is developing. The acceptance
is a crucial success factor for the imple-
mentation of data-intense technologies.

With increasing digitalization of pro-
cesses, the volume and complexity of data
in multiple data sources becomes a tech-
nical challenge, but also an opportunity
to make a company more successful. The
transformation of data to insights that drive
decisions or to identify improvement po-
tential or new business opportunities are

the main targets of ‘Big Data’, as it goes

beyond standard reporting by flexible

combination of data from multiple sources
in meaningful ways at any time.

A chemical company owns a huge
amount of data, stored mostly in differ-
ent computer systems, which have been
designed in order to accomplish a well-
defined function. It is self-evident that we
have to see all these as a source for ‘Big-
Data’ analytics. It is big in the sense of fre-
quency, e.g. when each minute thousands
of sensor measurements are stored from
a plant control system in a data historian
warehouse. It is also big in the sense of vol-
ume, variety and diversity of the informa-
tion type and data structure.

The questions which arise from this
scenario are:

e [s the information used in a compre-
hensive way?

e  What would be the opportunities if we
could transform the information into
knowledge?

e Are there new business opportunities
by linking data sources and creating
transparency?

The overarching goal is an accelerated
and improved decision-making process.

Together with approaches described
in the first sections of this article, a data
treatment competence allowing a detailed
analysis of production processes as well as
an automated performance analysis was
built up within Clariant. A major task of
this work is to give the data set a struc-
ture, which makes it accessible for statisti-
cal, machine learning and data modelling
techniques. In literature!39! there are also
activities which try to handle the unstruc-
tured nature of the data sets but this has not
been followed yet in the present approach.
The structure of this data cube approach is
described in Fig. 5.

Data from different sources like a data
historian system, enterprise resource plan-
ning systems ERP, process control sys-
tems, quality assurance and analytics are
stored in a new database, where they can
be treated independently from the daily
business. Via certain key variables like the
batch, or lot-number, the product name or
the production unit each data set can be as-
signed to a certain product and so a certain
production in a specific plant.

In Fig. 6 the workflow from data acqui-
sition to result implementation is depicted.

Having accomplished this data acqui-
sition and organization step a crucial part
of the data treatment has to be performed.
Normally the data sets are of different
structures. Batch-related information is an
individual set of numbers and facts for dif-
ferent batches. For example the production
unit, the raw material amounts, the type of
raw materials are discrete information.
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Fig. 5. Data cube approach for comprehensive data analysis and an improved decision making

process.
> Creation of > Data Analysis/ > 2 \\
Data M Contexts and Machine i T’fh"'“!' Imph i P
Aggregation of: Interpretation of = Correlations « Classification trees = Chemical-technical + Change
* Analytical data » events (e.g « Graphical analysis « Scatter plots interp sfacturing
+ Application tests heating/cooling) + Discriminant + Matrix plots * Rating of results instructions
+ Composition = Changes, drifts, analysis « Parallel = Discussion and * Performance
« Sensorial data peaks, ... = Principal Coordinates interp with Is} via
» Temperature Classification component project partner data tool
profiles « (Good - Bad / analysis + Support during + Process monitoring
Cheap - = Neuronal Networks implementation + Advanced process
Expensive) control

Fig. 6. Work-flow for data analysis projects.

There is the need to combine this infor-
mation with the time-dependent profiles
from sensors in the plant. A combination
can be reached by assigning contexts to
the relevant measured profiles. These con-
texts can be complete patterns, maximum
or minimum values, mean values or slopes
during different phases of a batch. With
this approach it is possible to characterize
each curve in a data historian system. Also
this step needs to be automated and it has
to be repeated for all the profiles that are
detected in a batch system. It might appear
attractive to select variable by intuition in
order to reduce the effort for analysis and
speed-up the process. Nevertheless, this
includes the danger to follow a wrong and
misleading interpretation, which might be
based on misinterpretation of operational
experience. Only if the algorithm is ap-
plied to all variables the observation of un-
expected correlation of process parameters
in the subsequent mathematical analysis is
possible. Fig. 7 demonstrates the idea of
profiling, context generation and saving
the results in a database.

If the data profiles come from different
sources such as different plants, the newly

created so-called data cube allows to slice
out a single product, which has been pro-
duced in different plants. Having the data
of both plants available allows the search
for performance differences and for the

explanations of these differences. If plant
design data has been incorporated to the
analysis even the single design criterion
can be identified, which leads to the per-
formance difference of the two plants. In
one example a straightforward optimiza-
tion measure could be derived directly by
comparing temperature profiles from two
different plants in one plot.

All the efforts described so far increase
the size and complexity of the data set.
Introducing a classification for continuous
variables describing the general location of
the data entry compared to the full data set
additionally adds complexity but will al-
low the application of the full toolset for
analysis. Often the interpretation of the re-
sults is improved by the newly introduced
classes because it is in the nature of human
beings to interpret clusters with the help of
an ‘if .. then’ statement rather than dealing
with real numbers and their functional rela-
tions.[10 The result of such an analysis can
be displayed in a decision tree to generate
understanding and give guidance, when a
decision is needed. In Fig. 8 an example of
such a decision tree is shown.

Data analysis starts with a smartly
formulated question, which allows the data
mining expert to apply the right method-
ology to the data set. It is very important
to understand the nature of the prob-
lem. From this knowledge the right tools
for analysis and optimization can be cho-
sen.[11.12]

Generally it makes sense to start each
analysis with a visualization of the data.
Very often differences can be quickly seen
visually and a technical interpretation
brings the expert from one graph to the next
in order to support or to disprove a theory
behind his/her observations. Generally the
graphical examination is powerful and fast
but the approach is limited to the number
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Parameter 1
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Fig. 7. Batch time analysis, events and phases are the fundament of the data table for analysis.
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Fig. 8. Example for the result representation as a decision tree. The importance of a parameter is
calculated from its strength to separate the two groups of interest from each other.

of dimensions, which can be depicted and
which can be interpreted by the user.

Large multivariate analyses require
the application of the corresponding tools
like principle component analysis or dis-
criminant analysis or many other similar
techniques in order to identify correlations,
clusters and functional dependencies. All
methods have in common that they can be
used to search for clusters in the variables
in order to reduce the dimension of the
problem and to derive the right variables
for model building.

Building data-driven models should
also follow the concept that the model ap-
proach which is chosen should fit to the
data type, data quality and size as well
as the accuracy of the expected response.
The subsequent application of the model
is also an important factor. For instance,
an advanced process control methodology
requires a much higher accuracy and reli-
ability compared to a trend analysis of the
expected future outcomes of experiments.

An important factor in industrial ap-
proaches with data driven models is the
application of real data, which are not
cleaned or produced by a dedicated design
of experiment. While outliers can be de-
tected and removed quite easily another
important factor is the redundancy in the
data. The complexity of modelling ap-
proach, which is equal to the number of
degrees of freedom, has to correspond
to the number of meaningful operating
points. Meaningful in this context means
that the operating points show significant
variation and are not redundant. The higher
the nonlinearity of the model, the higher
the required number of independent points.
The use of artificial neuronal networks!!3]

is very efficient for modelling, because
they can be defined in different complex-
ity without predefining the type of non-
linearity.

Models which have shown comparable
sensitivities at different complexity are a
reliable basis for advanced process control.

3. Advanced Process Control with
Data-driven Models

In principle advanced process control
refers to various techniques used in ad-
dition to the standard control methods in
industrial process control systems. In the
context of the current paper multivariable
model predictive control is in the focus

of the discussion. Model predictive con-
trol can be realized by using deterministic
models!'+15]1 where mostly the model pa-
rameters have to be adapted automatically
in order to reach the required accuracy for
process control.l1] These models have the
advantage that they have a strong capabil-
ity of prediction even to regions where the
plant has not yet been operated. The disad-
vantage is the relatively high development
and maintenance effort for the models.
Data-driven models can be built very fast
and automated but have the disadvantage
that they lose reliability when the param-
eter space reaches regions for which the
models are not built.

A combination of both approaches, de-
terministic and data-driven, can be found
in hybrid models. They combine both ad-
vantages, reduced complexity and predic-
tion capability. The deterministic model-
ling part is applied where reliable models
are already available.[17]

As an example an industrial implemen-
tation of neuronal network-based advanced
control system is shown in Fig. 9.

In this example the dosing of an addi-
tive to a reactor system is shown. The ad-
ditive can be seen as a catalyst for the reac-
tion. Since the reaction does not reach full
conversion the raw materials are fed back
to the reactor after the stream went through
a work-up procedure. The product and the
by-products are removed from the inter-
mediate product stream. After an intensive
data mining the significant parameters for
model building have been identified. The
model was trained and the capability to
predict the sensitivities have been checked
over long periods of time. This work has
been done in collaboration with the Atlan-
tec Systems GmbH in Willich.!'8] After the
technical implementation of the model and
the software environment from Atlan-tec

Fig. 9. Implemen-
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Raw Materials
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tation of the artificial
neuronal network in
the environment of
the process control
system.
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a test period was performed to adapt the
dynamics of the model to the dynamics of
the changes at the plant’s boundary con-
ditions. The advanced control system led
the plant to a more stable operation with
higher technical performance.

In most plants the optimum perfor-
mance is not a fix value but a function of
time. The changes in performance can be
caused by fouling, catalyst deactivation
or seasonal effects. Therefore it is neces-
sary to evaluate if an autonomous control
system really reaches the optimum perfor-
mance or if adaptations are needed to im-
prove the model itself.

4. Automated Performance
Monitoring

Additional to the described aging and
fouling effects with very long time scales,
unpredictable outside disturbances on short
timescales can occur as well. Therefore,
a performance monitoring should be in-
stalled to validate if the system is on the
best trajectory. Depending on the quantity
and frequency of the outside disturbances,
significant deviations from the optimal
performance can arise when the data-driv-
en model has not yet been trained with the
effect of the occurring event or the right
input parameter is missing in the model.

A systematic and automated perfor-
mance monitoring algorithm is necessary
to realize deviations early enough to keep
the system at its best performance. Since
advanced control systems try to improve
the existing good plant performance, it is
often hard to detect if a system is working
at the optimal operating point. This means
that additional to the long time scale effects
a very accurate observation of the perfor-
mance is necessary in order to distinguish
aging from weak control of the process.

The mentioned challenge of an accurate
process control to an optimum performance
requires excellent sensor technologies, a
smart control strategy and an evaluation of
the benefit and the robustness of the sys-
tem. In the project CONSENS (Integrated
CONtrol and SENSing)B! funded by
HORIZON2020, the European Union’s
Research and Innovation Program, these
topics have been investigated. Goal of the
project is to advance the continuous pro-
duction of high-value products that meet
high quality demands in flexible intensi-
fied continuous plants by introducing nov-
el online sensing equipment and closed-
loop control and performance monitoring
of the key product parameters. The project
is focusing on flexible continuous plants
but the results in the areas of sensing, con-
trol, and performance monitoring will be
transferable to other large-scale processes.
In this context, Clariant is leading the work

package which deals with tools for design
evaluation and monitoring. One part of this
work package is the on-line monitoring of
the performance of a plant. For demonstra-
tion purposes data from an existing large-
scale production plant has been used. The
implemented advanced control system
directly uses measured data from on-line
sensors of the product quality. From this,
the performance of the plant can be derived
directly. As described in section 2 the load
of the plant is of course one of the most
important performance factors. Fig. 10 de-
picts that the plant shows significant load
changes and also stable load levels lasting
several weeks.

The algorithm of the performance
monitoring methodology includes the fol-
lowing steps:

1. Data pre-treatment

2. Clustering of load levels

3. Creating sub-clusters to reduce aging
effects

4. Cross validation of the performance of
the sub-clusters

5. Derivation of a curve for the expected
best performance for each cluster

6. Evaluation of the distance between ac-
tual and expected performance

In the data pre-treatment step outliers
are removed from the data set. Outliers are
also the time spans of load change because
they are not significant compared to the
overall time. The first level of clustering
are the load levels. Here the sensitivity of
the cluster algorithm has to be adjusted to
have enough different load levels to elimi-
nate the load effect within the cluster. On
the other hand, the individual cluster needs
to be large enough to perform an expected
best performance calculation as shown in
Fig. 11. Criteria for this algorithm are the
intra- and inter-cluster distances. The sub-
clusters in Fig. 12 are created by choosing
a small and constant time discretization.

The step size is a function of aging rate
of the complete cluster and a large enough
amount of data to create a statistically
significant regression model for the cross
validation. The cross validation itself is a
prediction of the performance of one sub-
cluster based on the other sub-clusters. The
results of such a cross-validation is shown
in Fig. 12. By this way the expected best
performance curve is derived for each clus-
ter and can be used to evaluate the overall
performance of the plant shown in Fig. 13.

The evaluation of the actual perfor-
mance compared to the expected per-
formance is an indicator if the advanced
control systems runs properly or if main-
tenance is necessary either to adapt model
parameters (e.g. training periods or param-
eter weights) or if a significant change of
the model development is necessary.

The described effort demonstrates how
yield and energy consumption can be im-
proved by applying a high degree of auto-
mation and hence the defined optimization
potentials can be made sustainable.

5. Conclusion

The optimization of global produc-
tion networks is a very important effort to
achieve sustainable chemical production.
In the first step it is important to identify
the most interesting improvement poten-
tials and try to harvest the ‘low hanging
fruits’ as fast as possible. One important
point here is best practice sharing, com-
munication and a dedicated focused team
work. It was observed that after a certain
very successful time period, optimization
potentials can only be found further by
analyzing long value chains and the inter-
faces involved. Due to the rising complex-
ity it is obvious that big data sets are the
basis for these analyses and new tools and
methodologies have to be applied to ensure

o mﬁ_

Load
-

0

time [h]

Fig. 10. Clustered load levels in the plant after data pre-treatment.
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Fig. 11. Result of the

Performance
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cluster analysis for
the load shown as a
time dependent per-
formance curve.

time[h]

Fig. 12. Sub-

Performance

clustering and cross
validation to obtain
expected best per-
formance of Cluster
1 (cluster 1 is high-
lighted in Fig. 10).
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Fig. 13. Overall ex-
pected best perfor-
mance (black dots)
with respect to actual
performance.

efficiency. Searching in unstructured data
is a promising approach but requires de-
velopment and training. In this article the
focus lies on the work with structured data

explicitly prepared for data mining and
modelling. Depending on the level of digi-
talization and network integration the data
driven models can be used for advance pro-

cess control and automated performance
monitoring.

The described pathway from onsite
diagnostics, via big data analytics and
advanced control towards automated per-
formance monitoring is an innovative ap-
proach. It will gain more and more im-
portance through the increasing level of
digitalization in industry. Increasing and
extensive horizontal and vertical integra-
tion of data sources create the platforms
for the application of modern tools for da-
ta processing. An important success factor
for these technologies is the competence
in interpreting the modelling and/or data
mining results. A second important suc-
cess factor, the men machine interface, has
to be kept in mind and actively addressed
during development and implementation.

Acknowledgements

This project has received funding from the
European Union’s Horizon 2020 research and
innovation programme under grant agreement
No 636942.

Disclaimer

Any dissemination of results must indicate
that it reflects only the author’s view and that
the Commission is not responsible for any use
that may be made of the information it contains.

Received: June 23, 2016

[1] ProcessNet-Future Workshop:Resultsataglance,
http://processnetschafftzukunft.wordpress.com/
ergebnisse-des-workshops-im-uberblick/

[2] C.-J. Klasen, Chemistry & More 2014, 4, 18.

[3] O. Wachsen, V. Bacher, A. Geisbauer, J. Appel,
V. Niebuhr, O. Lade, Chem. Ing. Tech. 2015, 87,
683.

[4] Clariant Sustainability Report 2015.

[S] CONSENS Project, www.consens-spire.eu,
2016.

[6] C. O’Dell, C. J. Grayson, California Manage-
ment Review 1998, 40, 154.

[71 K. Bunse, M. Vodicka, P. Schonsleben, M.
Briilhart, F. O. Ernst, J. Cleaner Prod. 2011, 19,
667.

[8] I. H. Witten, E. Frank, M. A. Hall, ‘Data
Mining, Practical Machine Learning Tools
and Techniques’, 3rd ed., Morgan Kaufmann
Publishers, 2011.

[91 C. M. Bishop, ‘Pattern Recognition and
Machine Learning’, Springer Science +
Business Media, 2006.

[10] R. Otte, V. Otte, V. Kaiser, ‘Data Mining fiir
die industrielle Praxis’, Carl Hanser Verlag
Miinchen, 2004.

[11] Y. C. Ho, D. L. Pepyne, J. Optimization Theory
and Applications 2002, 115, 549.

[12] Y. C. Ho, Q.-C. Zhao, D. 1. Pepyne, IEEE Trans.
Automatic Control 2003, 48, 783.

[13] L. Fausett, ‘Fundamentals of Neural Networks:
Architectures, Algorithms and Applications’,
Prentice-Hall, 1994.

[14] S. Lucia, T. Finkler, S. Engell, J. of Process
Control 2013, 23, 1306.

[15] W. Gao, S. Engell, Comp. Chem. Engin. 2005,
29, 1401.

[16] C.Y. Chen, B. Joseph, Ind. Engin. Chem. Res.
1987, 26, 1924.

[17] J. Appel, O. Wachsen, Chem. Eng. Sci. 2007,
62,4910.

[18] Atlan-Tec GmbH, www.atlan-tec.de, 2016.



