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Abstract: The recent advent of high-throughput sequencing technologies has allowed the exploration of the
contribution of thousands of genomic, epigenomic, transcriptomic, or proteomic variants to complex phenotypic
traits. Here, we sought to conduct large-scale (Epi)Genome-Wide Association Studies (GWAS/EWAS) to
investigate theassociationsbetweengenomic (SingleNucleotidePolymorphism;SNP) andepigenomic (Cytosine-
Phospho-Guanine; CpG) markers, with multiple phenotypic traits in a population-based context. We used data
from SKIPOGH, a family- and population-based cohort conducted in the cities of Lausanne, Geneva, and Bern
(N = 1100). We used 7,577,572 SNPs, 420,444 CpGs, and 825 phenotypes, including anthropometric, clinical,
blood, urine, metabolite, and metal measures. GWAS analyses assessed the associations between SNPs and
metabolites and metals (N = 279), using regression models adjusted for age, sex, recruitment center, and familial
structure, whereas EWAS analyses explored the relations between CpGs and 825 phenotypes, additionally
adjusting for the seasonality of blood sampling and technical nuisance. Following the implementation of GWAS
and EWAS analyses, we developed a web-based platform, PhenoExplorer, aimed at providing an open access
to the obtained results. Of the 279 phenotypes included in GWAS, 103 displayed significant associations with
2804 SNPs (2091 unique SNPs) at Bonferroni threshold, whereas 109 of the 825 phenotypes included in EWAS
analyses were associated with 4893 CpGs (2578 unique CpGs). All of the obtained GWAS and EWAS results
were eventually made available using the in-house built web-based PhenoExplorer platform, with the purpose
of providing an open-access to the tested associations. In conclusion, we provide a comprehensive outline of
GWAS and EWAS associations performed in a Swiss population-based study. Further, we set up a web-based
PhenoExplorer platform with the purpose of contributing to the overall understanding of the role of molecular
variants in regulating complex phenotypes.
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markers, genes, and phenotypes to TransCure groups, with the
purpose of establishing a multi-disciplinary approach in studying
biological mechanisms related to membrane transporters.

2. Methods

2.1 Study Population
We used data from the Swiss Kidney Project on Genes in

Hypertension (SKIPOGH), a Swiss family- and population-based
multicentric cohort investigating the genetic and environmental
determinants of health-related outcomes in the Swiss population
(Fig. 1).[23,26] Study participants were recruited in the city of
Lausanne and the cantons of Geneva and Bern between 2009
and 2013 (SKIPOGH 1, baseline visit), and came for a follow-
up visit three years later (SKIPOGH 2: 2013–2016).[23] Inclusion
criteria were: (1) written informed consent; (2) ≥18 years of age;
(3) Caucasian origin; (4) at least one first-degree family member
willing to participate to the study. We excluded women who
reported being pregnant. Upon recruitment, SKIPOGH 1 baseline
visit eventually included 1129 participants grouped within 275
families, SKIPOGH 2 follow-up visit included 1034 participants
coming from 270 families, whereas 983 individuals participated
to both study waves. At both visits, participants attended in-depth
medical and anthropometric examinations after an overnight
fast, provided blood and urine samples, and completed a self-
administered questionnaire inquiring about their living standards,
socioeconomic and financial circumstances across the life-course,
lifestyle factors, and medical history. All participants provided
written informed consent.

2.2 SNP Data Collection and Pre-processing
Genome-wide Single Nucleotide Polymorphism (SNP) data

was obtained from white blood cells’ DNA (SKIPOGH 1), and
generated using the Illumina Human Omni 2.5 platform.[27] We
subsequently performed SNP data pre-processing and quality
control checks by applying an in-house built algorithm.[28–31]
Briefly, after an automatic clustering in GenomeStudio (Illumina
Inc. San Diego), we selected samples (participants) with a call
rate (proportion of non-missing SNPs) >0.99 to update the SNP
statistics. Once re-clustered, we retained markers with a call rate
>0.95. The quality control and pre-processing procedures yielded
979 samples with 1,637,659 SNPs, whose call rate was >95%,
whoseminor allele frequency (MAF)was >2%, andwhoseHardy-
Weinberg Equilibrium P value was >0.001. We then performed
multiple imputation for SNP missing values using the Minimac3
imputation algorithm, yielding a final set of 7,577,572 SNPs
available for analyses.[30,32,33]

2.3 CpG Data Collection and Pre-processing
Epigenome-wide Cyto-Phospho-Guanine (CpG) DNA

methylation from white blood cells was measured in 242

on the epidemiology of cardiometabolic risk factors, nutrition
epidemiology from population-based data.

1. Introduction
The recent advent of high-throughput ‘OMICS’ technologies

has provided a new conceptual framework for characterizing
genetic, biological, and pathophysiological processes occurring
in human populations.[1,2] Unlike the classical ‘gene candidate
approach’, which investigates the relation between a candidate
gene and a phenotype of interest in an experimental setting, large-
scale OMICS technologies allow implementing a ‘hypothesis-
free’ or ‘agnostic’ approach, whereby the associations between
a large number of pre-identified molecular variants (i.e. >30’000
variants) and a phenotype of interest are explored in a population-
based setting.[2,3]

Typical examples of OMICS analyses include Genome-Wide
Association Studies (GWAS), which investigate the associations
between Single Nucleotide Polymorphisms (SNP) on one hand,
and phenotypes of interest on the other hand (i.e. presence of
disease, life-span, anthropometric traits).[1,4] To date, the overall
impact of OMICS-based GWAS studies has been substantial in
biomedical research, highlighting common genomic (or genetic)
variants related to heart disease, age-relatedmacular degeneration,
chronic kidney disease, neurodegenerative disorders, as well as
many other diseases and phenotypic traits.[1,4–6] Genome-wide
polygenic risk scores, which combine the effects of millions of
markers across the human genome, have now reached potential
for clinical utility in people of European and Asian ancestries to
predict risk of future common chronic diseases, yet they currently
have limited transferability and clinical utility in people ofAfrican
ancestry.[7,8]

In addition to genomic molecular variants, OMICS-Wide
Association Studies further include transcriptomic, proteomic,
metabolomic, as well as epigenomic molecular markers, which
have been the object of keen interest in recent years, although
their tissue-specific and time-dependent characteristics make
them much more complex to explore. Epigenomic (or epigenetic)
changes include histone modifications, chromatin remodeling,
microRNAs, as well as DNA methylation, which constitutes
the most well-described epigenetic process.[9] DNA methylation
changes refer to the addition or removal of methyl groups to
CpG dinucleotides across the genome, occurring either naturally
(i.e. development, senescence), or as a result of environmental
exposures, such as lifestyle factors, nutrition, adversity, or
pollution.[9–12] In particular, previous studies have suggested
that DNA methylation changes may constitute an intermediate
process through which the external environment gets biologically
embedded, whereby various environmental exposures lead to
DNA.[13] Epigenome-wide association studies (EWAS), based
on easily accessible white blood cells DNA methylation data can
provide insight into themolecular and functional understanding of
GWAS loci and further our understanding of complex genotype-
phenotype relationships.[14,15]

In this research, we sought to conduct a large-scale multi-
OMICS wide analysis using data from SKIPOGH, a multicentric
population-based cohort conducted in Switzerland, mainly
focusing on kidney and blood pressure related phenotypes.[16–25]
The overarching objectives of this work are to document the
associations between genomic/epigenomic variants available
in SKIPOGH, including 7M SNPs, 420K CpGs, and over 800
different phenotypes (i.e. plasma and urinary solutes, lipids,
steroids, metabolites, metals, clinical outcomes), as well as to
develop a web-based platform, PhenoExplorer, providing open
access to the obtained GWAS and EWAS associations results,
thereby promoting the findability, accessibility and use of this
publicly funded resource. Specifically focusing on the TransCure
project, the goal of this work is to provide candidate (epi)genetic

Fig. 1. Infographics summarizing the SKIPOGH study design and groups
of phenotypes included in GWAS and EWAS analyses.
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distribution. Applied non-linear transformations included square-
root, log

10
, inverse, inverse square-root, square, inverse square,

cubic, and inverse cubic transformations.[40,41]

2.5 Statistical Analyses

2.5.1 Genome-Wide Association Study
Wetested the associations betweengenome-wideSNPmarkers

(predictor variables; 0: homozygous minor allele genotype, 1:
heterozygous genotype, 2: homozygous major allele genotype)
and 279 phenotypes from SKIPOGH 1 using linear regression
models, adjusting for age, sex, and recruitment center. We
accounted for random-effect familial relations by using a kinship
matrix generated based on imputation genotypes using PLINK.[42]
After discarding participants with missing data for the main
outcome and covariate variables (N = 241), the final analytical
set included 738 individuals.We accounted for multiple testing by
applying the Bonferroni correction method ensuring a control of
the family wise error rate below 0.05 (P<5E-08).[43] The GWAS
statistical analyses were carried out using EPACTS, Efficient
and Parallelizable Association Container Toolbox (University of
Michigan, Michigan, United States), while data preparation and
pre-processing was conducted using the R statistical software.[44]
For each GWAS,Manhattan plot and corresponding regional plots
weregenerated, the latter includingeveryputative local association
peak under association strength of P≤1.0E-5 (chromosome-
wide significance). Lookup of genetic functional consequence
and possible known related clinical phenotypes was performed
querying ENSEMBL.[45]

2.5.2 Epigenome-Wide Association Study (EWAS)
We applied fixed-effect linear regression models for the EWAS

analysis.[46] We ran 825 multiple linear regression models, using
SKIPOGH 2 phenotypes as successive, independent variables,
and pre-processed CpG DNA methylation data as a combined set
of dependent variables (N = 420,444 CpG markers). Regression
models were adjusted for age, sex, recruitment center (Lausanne,
Geneva, Bern), seasonality of blood sampling (spring, summer,
fall, winter), chip type (HM450, EPIC), 30 CPACOR principal
components, and Houseman-estimated white blood cell comp-
osition (CD8,CD4,NK,Bcells,Monocytes,Granulocytes).[47]The
EWAS statistical analyses were carried out using the R statistical
software and relevant CRAN and Bioconductor packages (R
Foundation for Statistical Computing, Vienna, Austria). For each
phenotype, EWAS results were represented using a Volcano plot
(x-axis: beta regression coefficient, y-axis: P value), a Manhattan
plot (x-axis: CpG chromosomal position, y-axis: P value), and a
summary table including beta, standard-error (SE) and P value
coefficients between each of the 420,444 CpG marker and the
phenotype of interest (Supplementary Information SI_IV).
Statistical significance threshold were set at P<0.05/420,444
following Bonferroni correction for multiple testing, as well as the
Benjamini-Hochberg (BH) correction.

2.6 PhenoExplorer
We developed PhenoExplorer, a web-based, interactive platform
leveraging EPACTS, and ‘LocusZoom Standalone’ pipelines, and
RStudio’s ‘Shiny’webapp,with thepurposeofvisualizingGWAS/
EWAS association results introduced previously.[44,48] Briefly, the
first development step comprised GWAS and EWAS analyses ran
on local machines aimed at generating summary statistics along
with Manhattan and Volcano plots (7,577,572 SNPs, EWAS:
420,444 CpGs). The second development step included summary
statistics filtering in order to obtain local association minima and
generating regional plots for every filtered local minimum SNP
(GWAS only). Third, annotated lookup tables with genetic and
clinical consequences were eventually generated from the raw

SKIPOGH 2 participants (follow-up visit) using the Infinium
HumanMethylation450 BeadChip microarray of Illumina
(HM450), assessing the methylation status at 485,512 CpG sites.
For a different set of 442 SKIPOGH 2 participants, epigenome-
wide DNA methylation was measured using a more recent
Infinium MethylationEPIC v1.0 microarray (EPIC), including
>90% of the CpG sites from the HM450 and an additional
413,743 CpGs (865,859 CpGs in total).[34] For both arrays, CpG
methylation data were summarized as β coefficients representing
a ratio of the average signal for methylated CpG sites to the sum
of methylated and unmethylated sites. CpG data pre-processing
included multiple imputation of missing data using the nearest
averaging multiple imputation method,[35] logit transformation of
imputed values, and a ‘denoising’ procedure aimed at accounting
for the variance introduced by participant’s familial structure
(random-effect confounder), whereby the resulting residuals were
directly added to the transformed CpGmethylation data, enabling
the implementation of fixed-effect regression models. To control
for the nuisance introduced by technical factors (methylation
array type, array position, and plate level), the CPACOR
procedure was applied, yielding 30 principal components to be
used as fixed-effect covariates in the regression models.[36] The
data pre-processing procedures eventually yielded 420,444 CpG
sites available for Epigenome-Wide Association Study analyses
(EWAS) in the SKIPOGH 2 sample.

2.4 Phenotypes

2.4.1 SKIPOGH 1 GWAS Phenotypes
In SKIPOGH 1, 981 participants had available samples for

plasma metabolites measurement. Samples were analyzed using
Liquid Chromatography-Multiple Reaction Monitoring/Mass
Spectrometry (LC-MRM/MS - 100µL samples), with measures
performed in positive and negative electrospray ionization, and
using the Mass Spectrometry Metabolite Library as reference
material for standard metabolites.[37] Of the 606 targeted raw
metabolites, 232 were eventually measured and used for GWAS
analyses following quality control and correction procedures to
account for the correlated nature of the data.[37,38]

In addition to plasma metabolites, GWAS analyses included
associations for metal elements measured in 24 h urine collections
(‘metallomics’ phenotypes). Briefly, 24 elements (Ag,Al,As, Be,
Bi, Cd, Co, Cr, Cu, Hg, I, Li, Mn, Mo, Ni, Pb, Pd, Pt, Sb, Se, Sn,
Ti, V, Zn) were measured in day and night urine samples using
the imaging mass spectrometry method (ICP-MS), enabling the
detection and quantification of metals in biological samples (N =
47 additional phenotypes).[39]

To account for the non-normal distribution of plasma
metabolites and urinary metal measures, phenotypes were
transformed using the log10 transformation.

2.4.2 SKIPOGH 2 EWAS Phenotypes
We included a total of 825 phenotype variables in EWAS

analyses (Fig. 1 and Supplementary Information SI_I). We
subdivided phenotype variables into nine categories: (1)
anthropometric measures (N = 19 variables), (2) bioelectrical
impedance measures (N = 8), (3) blood parameters (N = 74), (4)
clinical outcomes and health behaviors (N = 7), (5) general urinary
parameters (N = 196 – including day, night and 24 h measures),
(6) urinary steroids and enzymatic activities (N = 184 – including
day, night and 24 h measures), (7) plasma metabolites (N = 239),
(8) plasma and urinary metals (N = 96), and (9) allostatic load
scores (N = 2). Considering that physiological phenotypes may
display a non-normal distribution and potentially yield spurious
associations with CpG markers, we assessed the distribution
of each phenotype and performed a non-linear transformation
where necessary, in order to obtain normal, or close-to-normal
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data querying ENSEMBL database,[45] whilst the fourth and final
development step included results grouping, structuring, and web
publishing via ‘Shiny’ RStudio app.

3. Results

3.1 General Characteristics
We present the GWAS and EWAS samples characteristics in

Table 1. Overall, 979 individuals (87%) were included in GWAS
analyses (SKIPOGH 1: 2009–2012), of which 52% were women.
The mean age was 48.3 years, with 41% of the study sample being
recruited in Lausanne, 43% in Geneva, and 16% in Bern. 65%
of included participants were actively working at the time when
the interview was conducted, while 5% were students, 20% were
retired or disabled, and 10% were either unemployed or stay-at-
home. The proportion of current smokers was 24%, the average
BMI 25.2 kg/m2, whereas the proportion of individuals self-
reporting chronic diseases was 12% for heart disease, 13% for
kidney disease, 5% for diabetes, 32% for hypertension, and 1%
for cancer (any type of malignancy). A subset of 684 participants
were included in EWAS analyses using SKIPOGH 2 data (2013–
2016), with a mean age of 52.6 years. Whilst we found similar
distributions for sex, recruitment center, professional activity,
and tobacco smoking when compared to GWAS participants, the
EWAS sample included more individuals reporting heart disease
(19%), and fewer individuals reporting kidney disease (4%).

3.2 GWAS
Of the 279 phenotypes included in the GWAS analyses, 103

were significantly associated with 2804 SNPs (2091 unique
SNPs) at the genome-wide Bonferroni threshold (P<5.0E-08),
including 90 plasma metabolites and 13 urine metal phenotypes
(Supplementary Information SI_II and SI_III). In Table 2, we
show a list of non-exhaustive GWAS associations, displaying
26 phenotypes along with their top-associated SNPs (threshold:
P<9.4E-10). Further, among the SNPs displayed in Supple-
mentary Information SI_III, we found that none of the highlighted
markerswere locatedwithin thegenesof interest for theTransCure
project (SLC17, SLC9, DMT, FPN, SLC11, SLC40, ABCG,
FABP, TRPM4, SLC7). For each GWAS analysis, the obtained
results are represented using a Manhattan plot and a summary
table reporting the regression coefficients (beta, standard error,
P value) as displayed in Fig. 2 (Phenotype: Bilirubin (plasma
metabolite)).

3.3 EWAS
Out of the 825 EWAS-related phenotypes, 109 were signifi-

cantly associated with 4893 CpG markers at the Bonferroni
threshold (Supplementary Information SI_IV: 2578 unique
CpGs), including 34 blood parameters, 23 urinary parameters, 17
urinary steroids/enzymatic activity measures, 15 plasma
metabolites, 9 metallomics markers, 5 bioimpedance parameters,
3 anthropometry measures, 2 clinical outcomes/health behaviors,
and 1 biological health score (allostatic load). The phenotypes
displaying the highest number of associated CpG markers were
related to white blood cell composition, including the number of
eosinophils (N = 1733/N = 1204 for the absolute number of
eosinophils), neutrophils (N = 600/N = 5 for the absolute number
of neutrophils), basophils (N= 22/N= 139 for the absolute number
of basophils), and leukocytes (N = 79), followed by body water
amount (N = 199), smoking status (N = 120), and urinary
methylxanthine excretion (urinary paraxanthine: N = 146; urinary
theophylline: N = 83). Specifically examining CpGs located
within TransCure genes of interest, we found 30 significant
associations, involving 12 phenotypes (Table 3). Overall, 20
associations were found for the number/percentage of eosinophils
or neutrophils, two CpGs were associated with blood triglyceride

levels (ABCG1-cg06500161, SLC7A11-cg06690548), and
respectively one CpG for blood insulin (ABCG1-cg06500161),
HDL cholesterol ABCG1-cg06500161), Gamma-Glutamyl
Transferase (SLC7A11-cg06690548), basal metabolism
(SLC17A6-cg04954559), body water (SLC9A6-cg04675306),
mean corpuscular haemoglobin (SLC7A11-cg06690548), and
urinarymagnesium excretion (SLC7A6-cg09194755). The results
for each EWAS analysis are presented using a Volcano plot and a
Manhattan plot, as illustrated in Fig. 3 (Phenotype: current
smoking), as well as a table reporting regression coefficients
(beta, standard error, P value) between each phenotype and CpG
marker (see PhenoExplorer). In the example of current smoking
(binaryphenotype:Yes/No), 122CpGswere found tobe associated
at Bonferroni threshold (Top five associated CpGs: AHRR-
cg05575921, β=-1.17, P=4.52E-65; F2RL3-cg03636183 β=-
0.95, P=5.09E-45; cg21566642, β=-1.17, P=1.22E-44; AHRR-
cg21161138 β=-1.00, P=2.16E-44; cg01940273, β=-0.81,
P=3.79E-42).

3.4 PhenoExplorer
We present the inner structure of PhenoExplorer as well as the

user’s layout in Fig. 4. As described in the Methods section, the
development process included four main steps, including running
GWAS/EWAS regressions on a local server (R, EPACTS),
Manhattan/Volcano/regional plot generation using summary
statistics, and web-based platform organization and structuring
using ‘Shiny’. From the user’s perspective, PhenoExplorer allows
performing queries using four different criteria: (1) Phenotype of
interest (i.e. urinary zinc levels, blood glucose, CRP, smoking

Fig. 2. Genome-Wide Association Study results for plasma bilirubin
concentration represented using a Manhattan plot (A) and a regional plot
(B). Linear regression model for the association between GWAS markers
and phenotypes of interest, adjusting for age, sex, recruitment center,
and familial structure (random-effect covariable).
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as a result of the modular conception of PhenoExplorer (use case
scenario given in the Supplementary Information SI-Video).
The PhenoExplorer users’ URL shall be communicated upon
motivated request addressed to the authors (jean-pierre.ghobril@
unisante.ch).

4. Discussion
In this research, we conducted two large-scale multi-OMICS

analyses using data from the SKIPOGH population-based cohort,
including over 7M genetic variants, 420K epigenetic markers,
and 825 phenotypes. We found that 2804 SNPS (2091 unique

status, history of heart disease); (2) Genetic markers (CpG,
SNP, gene name); (3) Statistical significances; and (4) genomic
position. The resulting overview includes a Manhattan plot,
a summary table (beta, standard error, P value, chromosome,
chromosomal position, and location description (i.e. intragenic,
gene body, transcription start site, exon, intron)), a Volcano plot
(EWAS only), as well as regional plots displaying local minima
of interest on a 1000bp-wide sliding window (GWAS only).
Whilst PhenoExplorer includes >800 SKIPOGH phenotypes,
additional GWAS and EWAS associations results (summary
tables, Manhattan, Volcano, regional plots) can be directly added

Table 1. General characteristics of GWAS/EWAS included participants.

SKIPOGH 1 (GWAS) SKIPOGH 2 (EWAS)

N=979 N=684

Women (N, %) 589 (52%) 359 (52%)

Age (μ±SD) 47.4 (±17.5) 52.6 (±15.5)

Center (N, %)

Lausanne 416 (37%) 307 (45%)

Geneva 426 (38%) 279 (41%)

Bern 287 (25%) 98 (14%)

Professional activity

Working (employed, self-employed) 732 (66%) 449 (66%)

Student 58 (5%) 7 (1%)

Retired/Disabled 207 (19%) 148 (22%)

Unemployed/Stay-at-home 119 (11%) 75 (11%)

Military service 1 (0%) 0 (0%)

Tobacco smoking (N, %)

Never 498 (45%) 287 (42%)

Former 346 (31%) 222 (33%)

Current 272 (24%) 171 (25%)

BMI (μ±SD) 25 (±4.5) 25.6 (±4.6)

Chronic disease (N, %)

Heart disease 128 (12%) 130 (19%)

Kidney disease 147 (13%) 26 (4%)

Diabetes 51 (5%) 39 (6%)

Hypertension 346 (31%) 204 (30%)

Cancer 13 (1%) 8 (1%)

Assessed phenotypes (N)

Plasma metabolites 232 239

Metallomics 47 96

Anthropometry 19

Bioelectrical impedence 8

Blood parameters 74

Clinical outcomes/Health behaviors 7

Urinary parameters 196

Urinary steroids 184

Allostatic load 2
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markers) were associated with 103 phenotypes in the GWAS
analyses at the genome-wide Bonferroni threshold, whereas
4893 CpGs (2578 unique CpGs) were associated with 109/825
phenotypes in the EWAS analyses. Finally, using ‘Shiny’ R-based
app, we developed a user-friendly, web-based platform named
‘PhenoExplorer’, providing an open access to GWAS and EWAS
results obtained in this research.

Whilst the purpose of this research was to conduct large-scale
GWAS and EWAS analyses without specifically interpreting the
obtained results, we used some of the previously established
associations toverifywhether themodels implementedherecould
partially replicate former findings. The large-scale exploratory
GWAS yielded associations in line with previous investigations,
but also novel findings. In particular, we reproduced known
associations involving plasma biliverdin and bilirubin with
rs887829,[49] rs13538 with N-acetyl-phenylalanine,[50]
rs1061337 with hexanoylcarnitine,[51] as well SLC2A9 variants
and uric acid.[52,53] Using tobacco smoking in EWAS analyses,
we found that 109 of the 120 (91%) identified CpGs were found
to be associated with smoking status in former smoking-related
EWAS studies, with top hits consistently including AHRR-
cg05575921, F2RL3-cg03636183, or GFI1-cg09935388 in
SKIPOGH.[12,54,55] Finally, all of the GWAS and EWAS analyses
presented in this research are comprehensively reported and
organizedwithinPhenoExplorer, aweb-basedplatformproviding
a fast turnover and visualization of millions of associations, and

offering a modular structure for the incorporation of additional
results.

4.1 Strengths and Limitations
This study has several strengths, the first being the richness

of the physiological, clinical, lifestyle, and (epi)genetic data
available in the SKIPGOH cohort, allowing to investigatemultiple
research questions related to the contribution of molecular
variants to complex phenotypes. Second, we developed a user-
friendly, web-based platform with the purpose of openly sharing
GWAS and EWAS results with researchers interested in either
specific genetic or epigenetic markers, or phenotypes available in
SKIPOGH. The added values of PhenoExplorer is the real time
interaction with the data as well as a rapid visualization of GWAS/
EWAS associations results, whereby user queries may include
phenotypes, (epi)genetic marker identifiers (SNPs, CpGs), and
gene names. Finally, the modular structure of PhenoExplorer
allows a rapid integration of additional GWAS/EWAS/XWAS
results, further allowing the platform to grow.

This study also has important limitations to acknowledge.
First, the small sample size (N

GWAS
= 979, N

EWAS
= 684) restricts

the ability to detect smaller effect-size associations and limits
the overall statistical power. Second, GWAS and EWAS models
were minimally adjusted for potential confounders (age, sex,
recruitment center, familial structure, technical nuisance), but did
not include covariates that may specifically confound relations

Table 2. Non-exhaustive selection of SNPs associated with plasma metabolite phenotypes (SKIPOGH 1).

Phenotype Type top SNP Chromosome Gene & consequence P a,b

BILIVERDIN Plasma metabolite rs887829 2 UGT1A8 intron drug response 4.20E-30

N.ACETYL.L.PHENYLALANINE Plasma metabolite rs13538 2 NAT8 / ALMS1P1 missense variant 7.71E-25

N.ACETYL.L.PHENYLALANINE Plasma metabolite rs6546838 2 ALMS1P1 missense variant 1.87E-23

URIDINE.5.MONOPHOSPHATE Plasma metabolite rs35724886 14 ACOT4 missense variant 2.50E-21

THYMIDINE.5.MONOPHOSPHATE Plasma metabolite rs35724886 14 ACOT4 missense variant 4.53E-21

5.CMP Plasma metabolite rs35724886 14 ACOT4 missense variant 5.40E-17

hexanoylcarnitine Plasma metabolite rs1061337 1 ACADM synonymous variant 7.70E-17

L.CARNITINE Plasma metabolite rs1171614 10 SLC16A9 5 prime UTR variant 8.94E-16

BILIRUBIN Plasma metabolite rs887829 2 UGT1A8 intron drug response 4.50E-15

BILIRUBIN Plasma metabolite rs1137617 7 KCNH2 stop gained 4.50E-15

DEOXYCARNITINE Plasma metabolite rs7969761 12 SLC6A13 intron 2.01E-13

TRANS.4.HYDROXYPROLINE Plasma metabolite rs78703287 10 APB1IP intron variant 1.70E-12

DEOXYCARNITINE Plasma metabolite rs10848766 12 KDM5A intron 3.72E-12

isovalerylcarnitine Plasma metabolite rs142651837 8 RAB2A intron variant 1.83E-11

INOSINE.5.PHOSPHATE Plasma metabolite rs61292904 3 ACAD11 2.72E-11

GALACTARATE Plasma metabolite rs2229540 1 AKR1A1 5.20E-11

isovalerylcarnitine Plasma metabolite rs113899565 8 LINC01301 non coding transcript exon variant 8.46E-11

octanoylcarnitine Plasma metabolite rs748826784 1 ACADM frameshift variant 1.32E-10

GUANINE Plasma metabolite rs184011454 2 intron RHOQ in LD with ATP6V1E2 1.63E-10

LEUCINE Plasma metabolite rs78703287 10 APBB1IP intron variant 2.23E-10

CYTIDINE Plasma metabolite rs62363602 5 SLC38A9 intron 4.57E-10

THEOPHYLLINE Plasma metabolite rs2787566 6 GRIK2 non coding exon transcript 5.30E-10

L.ISOLEUCINE Plasma metabolite rs151287024 13 FAM12A intron variant 7.62E-10

3.HYDROXY.3.METHYLGLUTARATE Plasma metabolite rs1171616 10 SLC16A9 intron variant 8.07E-10

L.PHENYLALANINE Plasma metabolite rs75338359 14 KCNH5 intron variant 8.86E-10

LEUCINE Plasma metabolite rs151287024 13 FAM12A intron variant 9.40E-10

a Linear regression model for the association between SNP marker and phenotypes of interest, adjusting for age, sex, recruitment center, and famili-
al structure (random-effect covariable)
b Significance threshold was set using the Bonferroni correction method (P <5.0E-08).
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between (epi)genetic variants and given phenotypes, eventually
leading to spurious associations. Disentangling these effects
would thus require repeating GWAS/EWAS analyses by including
additional covariates, depending on the choice of phenotypes and
the research question. Third, unlike genetic variants, epigenetic

modificationsaretissue-specificandinfluencedbymultiplefactors,
such as genetic makeup, aging, and environmental exposures,
and constitute a dynamic process over the life-course.[55,56]
Consequently, the present EWAS analyses preclude directly
establishing a cause-to-effect relation between CpG markers and
included phenotypes, and may be affected by time discrepancies
between the collection periods of the phenotype on one hand, and
the epigenetic profile on the other hand (i.e. metabolites/metals
were measured at SKIPOGH 1 while CpG data was measured at
SKIPOGH 2). Fourth, although multi GWAS and EWAS analyses
tend to be appointed as agnostic or hypotheses-free, they actually
imply hidden hypotheses that need to be accounted for while
conductingOMICS studies.[2,3] In a previous research byBarker,[3]
the authors have identified three hidden hypotheses underlying
EWAS studies: (1) insufficient EWAS coverage: implying that not
all epigenetic markers are included in available EWAS arrays;
(2) biological relevance of the tissue in which epigenetic markers
are measured: whereby the tissues in which epigenetic measures
are performed may not be relevant for the assessed phenotypes
(i.e. DNA methylation measured in blood and tested in relation
to complex neurological disease); (3) biological relevance for the
phenotype of interest: postulating that the biological nature of
diseases and most phenotypes is often complex, with individual
epigenetic modifications generally playing a modest role in the
global understanding of the trait or the pathophysiological process
of interest.

4.2 Conclusion
In conclusion, this work provides a comprehensive outline of

GWAS and EWAS-based associations performed in the context
of a population-based study conducted in adults of European
ancestry living in Switzerland, including a large number of
physiological, clinical, and lifestyle-related phenotypes. Further,
by providing the obtained results through the development of
the PhenoExplorer web-based platform, we aim to contribute to
the overall understanding of the role of genetic and epigenetic
variants in the regulation of multiple phenotypes, assessed in a
population-based observational setting. We believe that the use
of PhenoExplorer as part of the TransCure project shall allow
highlighting potential associations of interest between markers
located within or in the vicinity of TransCure genes/transporters
of interest and phenotypes sampled in the SKIPOGH population-
based cohort. We show here a practical example of how publicly
funded results can be made easily findable, accessible and
usable for future projects by the researchers with interest in the
phenotypes available, in particular kidney-related phenotypes.
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Fig. 3. Epigenome-Wide Association Study results for current smoking
represented using a Volcano plot (A) and Manhattan plot (B) (SKIPOGH
2 – EWAS). Linear regression model for the association between CpG
markers and phenotypes of interest, adjusting for age, sex, recruitment
center, seasonality of blood sampling, and familial structure (random-
effect covariable).

Fig. 4. PhenoExplorer development steps and data organization for
GWAS/EWAS results. (1) GWAS/EWAS analyses running on local
machines (R, EPACTS); (2) Database organization, structuring and
pooling; (3) Query description; (4) Description of Query results; (5)
Graphical User Interface presentation.
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Table 3. Summary of intragenic CpGs (NCCR TransCure genes) associated with EWAS-included phenotypes (SKIPOGH 2)

CpG β a SE a P a,b Gene
Intragenic
region Chromosome Position Strand Phenotype

Transcure
project

cg04954559 9.49E-04 1.69E-04 3.23E-08 SLC17A6 Body chr11 22365428 -
Basal metabolism
(kcal/day)

1 Astrocytes
AVolterra

cg21627181 -9.42E-01 6.46E-02 1.49E-37 SLC17A4 TSS1500 chr6 25754190 + Eosinophils
1 Astrocytes
AVolterra

cg21627181 6.86E-02 8.20E-03 1.83E-15 SLC17A4 TSS1500 chr6 25754190 + Neutrophils
1 Astrocytes
AVolterra

cg21627181 -1.50E+00 1.22E-01 1.30E-28 SLC17A4 TSS1500 chr6 25754190 + Abs. n. eosinophils
1 Astrocytes
AVolterra

cg04675306 4.46E-01 7.29E-02 1.61E-09 SLC9A6
TSS200-
TSS200 chrX 135067450 -

Bioimpedance - Body
water (L) 2 NHE DFuster

cg01520853 -5.66E-01 6.79E-02 2.03E-15 SLC11A1 Body chr2 219259478 + Eosinophils
3 Iron DMT FPN
RDutzler

cg18854666 2.90E-01 5.33E-02 1.08E-07 SLC11A1
1stExon-
5'UTR chr2 219247055 + Eosinophils

3 Iron DMT FPN
RDutzler

cg01520853 4.67E-02 7.78E-03 5.24E-09 SLC11A1 Body chr2 219259478 + Neutrophils
3 Iron DMT FPN
RDutzler

cg01520853 -8.44E-01 1.25E-01 6.62E-11 SLC11A1 Body chr2 219259478 + Abs. n. eosinophils
3 Iron DMT FPN
RDutzler

cg06500161 -1.48E+00 2.71E-01 6.16E-08 ABCG1 Body chr21 43656587 +
Blood HDL chol.
(mmol/L)

4 Multidrug
ABCG2 KLocher

cg06500161 8.98E-01 1.41E-01 3.78E-10 ABCG1 Body chr21 43656587 +
Blood triglyceride
(mmol/L)

4 Multidrug
ABCG2 KLocher

cg06500161 5.72E-01 1.02E-01 3.39E-08 ABCG1 Body chr21 43656587 + Blood insulin (mU/L)
4 Multidrug
ABCG2 KLocher

cg21827955 -5.82E-01 8.72E-02 1.07E-10 ABCG5 Body chr2 44062010 - Eosinophils
4 Multidrug
ABCG2 KLocher

cg01176028 3.90E-01 5.35E-02 2.27E-12 ABCG1 Body chr21 43653234 + Eosinophils
4 Multidrug
ABCG2 KLocher

cg01881899 6.31E-01 6.72E-02 1.07E-18 ABCG1 Body chr21 43652704 - Eosinophils
4 Multidrug
ABCG2 KLocher

cg01176028 -3.42E-02 6.04E-03 3.25E-08 ABCG1 Body chr21 43653234 + Neutrophils
4 Multidrug
ABCG2 KLocher

cg21827955 -9.42E-01 1.57E-01 5.60E-09 ABCG5 Body chr2 44062010 - Abs. n. eosinophils
4 Multidrug
ABCG2 KLocher

cg01176028 6.30E-01 9.68E-02 2.81E-10 ABCG1 Body chr21 43653234 + Abs. n. eosinophils
4 Multidrug
ABCG2 KLocher

cg01881899 1.11E+00 1.20E-01 3.50E-18 ABCG1 Body chr21 43652704 - Abs. n. eosinophils
4 Multidrug
ABCG2 KLocher

cg04748546 -5.28E-01 6.83E-02 1.28E-13 TRPM4 Body chr19 49696260 - Eosinophils
6 Cation TRPM4
HAbriel

cg04748546 -8.08E-01 1.24E-01 2.96E-10 TRPM4 Body chr19 49696260 - Abs. n. eosinophils
6 Cation TRPM4
HAbriel

cg06690548 -1.03E+00 1.67E-01 1.44E-09 SLC7A11 Body chr4 139162808 -
Blood triglyceride
(mmol/L)

7 AA SLC7
DFotiadis

cg06690548 -7.32E-01 1.10E-01 5.51E-11 SLC7A11 Body chr4 139162808 - Blood GGT (U/L)
7 AA SLC7
DFotiadis

cg19928703 -9.20E-01 6.27E-02 7.14E-38 SLC7A1 5'UTR chr13 30143971 - Eosinophils
7 AA SLC7
DFotiadis

cg02999224 2.55E-01 3.96E-02 4.33E-10 SLC7A7
1stExon-
5'UTR chr14 23284559 - Eosinophils

7 AA SLC7
DFotiadis

cg19928703 6.56E-02 8.06E-03 8.65E-15 SLC7A1 5'UTR chr13 30143971 - Neutrophils
7 AA SLC7
DFotiadis

cg06690548 -4.87E-05 8.68E-06 3.07E-08 SLC7A11 Body chr4 139162808 - Blood MCH (pg)
7 AA SLC7
DFotiadis

cg19928703 -1.40E+00 1.21E-01 4.98E-26 SLC7A1 5'UTR chr13 30143971 - Abs. n. eosinophils
7 AA SLC7
DFotiadis

cg09194755 -5.44E+00 9.13E-01 4.41E-09 SLC7A6
5'UTR-
5'UTR chr16 68298776 -

Urinary magnesium
day excretion
(mmol/h)

7 AA SLC7
DFotiadis

cg06690548 -2.91E-01 5.21E-02 3.48E-08 SLC7A11 Body chr4 139162808 - Allostatic load score
7 AA SLC7
DFotiadis

a Linear regression model for the association between CpG markers and phenotypes of interest, adjusting for age, sex, recruitment center, seasona-
lity of blood sampling, and familial structure (random-effect covariable)
b Significance threshold was set using the Bonferroni correction method (P < 0.05/420’444)
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