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Putting Chemical Knowledge to Work
in Machine Learning for Reactivity

Kjell Jorner*

Abstract: Machine learning has been used to study chemical reactivity for a long time in fields such as physical
organic chemistry, chemometrics and cheminformatics. Recent advances in computer science have resulted in
deep neural networks that can learn directly from the molecular structure. Neural networks are a good choice
when large amounts of data are available. However, many datasets in chemistry are small, and models utilizing
chemical knowledge are required for good performance. Adding chemical knowledge can be achieved either by
adding more information about the molecules or by adjusting the model architecture itself. The current method
of choice for adding more information is descriptors based on computed quantum-chemical properties. Exciting
new research directions show that it is possible to augment deep learning with such descriptors for better per-
formance in the low-data regime. To modify the models, differentiable programming enables seamless merging
of neural networks with mathematical models from chemistry and physics. The resulting methods are also more
data-efficient and make better predictions for molecules that are different from the initial dataset on which they
were trained. Application of these chemistry-informed machine learning methods promise to accelerate research
in fields such as drug design, materials design, catalysis and reactivity.
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Artificial intelligence (AI) is a broad research field that aims
to use computers to accomplish tasks that were previously on-
ly achievable with active input from intelligent humans. Some
of the most famous tools in the AI toolbox is machine learning
(ML), which refers to algorithms that learn from data, and deep
learning (DL), which refers to such algorithms based on neural
networks (NNs) with many layers. During the last 5–10 years,
interest in applying ML in chemistry has exploded, with count-
less research articles, reviews,[1,2] perspectives[3,4] and books.[5,6]
The large interest in these methods stems from their potential to
accelerate discovery and development of chemical solutions to
important societal challenges and to bring these to the market
faster. Sustainable energy production,[7] chemical production,[8,9]
drug design,[10] and the computer-aided synthesis of (drug-like)
molecules[11] are just some of the challenges where the application
of AI in chemistry can make a difference.

The new wave of AI methods in chemistry follows significant
advances in computer science.[12] One application where DL ex-

cels is image recognition (Fig. 1a), with models trained on the
large datasets of the internet era.[13] These powerful models rep-
resent a shift from the previous hand-crafted, rule-based expertAI
systems, to NNs that learn the rules implicitly from the data. The
rationale behind this shift is that ever more flexible NNs can come
up with more and sometimes better rules than experts, provided
that they are given sufficient data to learn from. One example
of this transition is when Google Translate went from an expert
system consisting of 500,000 lines of code to a new and better DL
system with only 500 lines of code.[14]Another recent triumph for
DL is image generation, where algorithms such as DALL-E[15,16]

and Stable Diffusion[17] are mature enough to co-create scientific
journal cover art[18] and illustrations.[19] Deep learning-based AI
algorithms are now the champions not only of chess, but of
more complex games such as Go[20] and multi-player poker.[21]

The advances in methodology in computer science have also
spilled over to the physical sciences, where algorithms such as
graph neural networks (GNNs) are applied to chemical problems
(Fig. 1b). Triumphs include the AlphaFold algorithm for protein
structure prediction (Fig. 1c),[22] that beats previous expert-de-
vised systems and has the potential to boost research in areas such
as structure-based drug design and biocatalysis.[23–25] In quantum
chemistry, promising advances include machine-learned approxi-
mations to the universal density functional,[26,27] described as one
of the holy grails that would enable computer-aided catalysis and
reaction design.[28]

Generalization, Chemical Space and Applicability
Domain

Despite these promising advances, successful application of
ML in chemistry has so far been limited. The root of the problem
has to do with the amount and type of available data for training
the models. Generally speaking, flexible DL methods need large
data sets for optimal performance. For comparison, DALL-E was
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also with millions of reactions.[33] In contrast, the size of reactivity
datasets modeled using traditional approaches can have as little as
11 data points and often not larger than a hundred.[34] Even the
larger datasets such as the PDB and reaction databases are consider-
ably smaller than the datasets used for image and language models.

Translation models for languages with much less available
data often perform poorly, and in an infamous example, image

trained on 250 million text-image pairs[15] and Stable Diffusion
on 2.3 billion images.[29] In chemistry, large datasets exist only
for some applications. AlphaFold was trained[22] on 170,000 pro-
tein structures from the Protein Data Bank (PDB).[30] Models for
retrosynthesis planning (Fig. 1c) are most often trained[31] on a
dataset of ca. 3.3 million reactions text-mined from the US Patent
Office,[32] or on data from commercial databases such as Reaxys,
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Fig. 1. (a) Application of deep learning originating in computer science. Computer vision is a perfect area for using transfer learning and multi-task
learning on multiple related image recognition tasks and datasets. Models struggle with out-of-distribution data that is different from what they
were trained on. (b) Application of deep learning in chemistry mainly involves converting the molecular structure into graph-based or text-based
representations and using the corresponding architectures. Models have an applicability domain in chemical space that depends on the training set.
Generalization is difficult, not least due to activity cliffs. (c) Successful applications of deep learning include tasks with much available data, such as
protein structure prediction and synthesis prediction.
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ditional information that we might have on the molecules or mate-
rials in question? While the old expert systems relied only on our
own intuition to craft expert rules, we have now surrendered that
intuition almost completely. The answer to our problems might
be to put just enough chemical knowledge into the models to help
them on the way, but not bias them too much. Machine learning
practitioners prefer to talk about inductive bias or strong priors.[49]
As expressed by Goodfellow and co-workers:

“In order to generalize well, machine learning algorithms
need to be guided by prior beliefs about what kind of function
they should learn.”[12]

In the simplest case, this can just mean choosing the right
model architecture for the modality of the data (architecture
prior).[50] For example, molecules are a natural fit for GNNs. But
we can go further. It has recently become apparent that accom-
modation of molecular symmetries such as translation and rota-
tion in three-dimensional GNNs leads to better accuracy and data
efficiency.[51] This is a natural prior for molecular data that has no
apparent drawbacks. Similarly, information such as bond order
or hybridization state is routinely added to GNNs.[52] In the fol-
lowing two sections, we will explore two recent trends in these
directions: (1) adding more chemical information through expert
descriptors, and (2) incorporating physical models into the ML
frameworks themselves through differentiable programming. The
main focus will be on applications related to reactivity prediction
due to our own interest in this area. Reactivity is addressed in a
broad sense, ranging from activation energies of individual reac-
tions to predictions of selectivity and retrosynthesis pathways.

Combining Descriptors with Deep Learning for
Reaction Prediction

Machine learning has a long history in chemistry, going from
linear free energy relationships from the first half of the last century
to chemometrics and cheminformatics in the second half.[53] One
of the machine-readable molecular representations[54] that have
dominated is descriptors (Fig. 2a).[55]The translation of amolecule
into its representation is sometimes called featurization, or in DL
lingo, embedding.[56] The descriptor representation is most often
combined with traditional ML algorithms such as multivariate lin-
ear regression or non-linear methods such as Random Forest.[54] In
contrast, modern DL architectures for molecules are based either
on graph representation of molecules or natural language process-
ing of string representations of molecules such as SMILES[57] or
SELFIES (Fig. 1b).[58] Given sufficient data, these models learn
their own optimal representation of the molecules rather than rely
on expert encoding schemes.[59] While DL approaches generally
perform better in the big-data regime and traditional descriptors
better in the low-data regime,[56] recent advances have shown the
advantages of combining both approaches.[60]

The more traditional descriptor-based approaches are some-
times called quantitative structure–activity relationships (QSAR),
especially when referring to biological activity, and sometimes
quantitative structure–property (QSPR) relationships more gen-
erally. For reactivity, the concept QSRR is often used, or QSSR
when referring specifically to selectivity prediction. QSRR has a
long history under the name of linear free energy relationships,[53]
with perhaps the first study by Brønstedt and Pedersen in 1924.[61]
One of the first modern QSSR models for catalysis was a study
from 1997 by Norrby and co-workers, who related the regio- and
stereoselectivity of palladium-catalyzed allylation reactions to
steric and strain descriptors.[62] This type of descriptors are often
described as ‘expert crafted’,[56] as the right choice of descriptors
requires some domain knowledge. The procedure is related to the
concept of feature engineering in ML. In more recent times, de-
scriptors from quantum mechanics (QM) have been used together
with more sophisticated models by, among others, the groups of
Sigman.[63,64] and Doyle.[65,66] A related approach uses compara-

recognition models trained on an insufficient sample of photos led
to critical failures that humiliated minorities and sparked global
discussions about the bias inherited by these technologies.[35] In
the same way, DL models trained for chemistry face problems
when making predictions outside the chemical space on which
they were trained (Fig. 1b). In statistical terminology, the models
do not generalize well. A central concept with a long history in
chemistry is the applicability domain,[36] which constitutes a de-
scription of the types of molecules and property ranges for which
a model is reliable. Any ML model used for regulatory purposes
in chemistry is actually recommended to have an applicability
domain according to OECD guidelines.[37] Generalization outside
the training space is particularly important in chemistry, where
different compound classes occupy distinct parts of ‘chemical
space’ and where properties can change unpredictably with struc-
ture in terms of so-called activity cliffs.[38,39]While a lesser extent
of generalization is required for library searches of similar com-
pounds, more unconstrained inverse design[40] of molecules with
new functionalities places much larger requirements on models
with very large applicability domains.[41]

Utilizing Existing Data better or Gathering more
Informative New Data

The problem of generalization has typically been tackled by
approaches such as transfer learning, or multi-task learning (Fig.
1a). In transfer learning, a NN model is first trained on a (larger)
dataset for one task in a stage called pre-training. The pre-trained
model is then further trained on a second (smaller) dataset for
a related task in a stage called fine-tuning. The idea is that the
model learns general trends from the first task that are also valid
for the second task. In multi-task learning, the model learns on
both datasets and tasks at the same time instead of the sequential
training used in transfer learning. Both multi-task and transfer
learning effectively increase the size of the training data. There
are successful examples of transfer learning in chemistry where
tasks are similar, for example, learning computed atomization en-
ergies using density functional theory (DFT) vs. coupled cluster
theory,[42] or improving reaction activation energies computed at
a lower level of theory.[43,44] However, applications to, in particu-
lar, experimental data has been limited, with successful examples
including the work by Reymond on carbohydrate reactivity.[45]
In another recent example, researchers from the Janssen pharma-
ceutical company demonstrated improved predictions on in-house
chemistry when pre-training on both patent data and academic
data.[46]

Another approach to handle the problem of limited data is
active learning, where an algorithm suggests which data points
should be collected next to maximally improve the predictive ac-
curacy of the ML model.[47] However, due to time constraints it is
often not practical to gather new data as it comes from costly sim-
ulations or time- and labor-intensive experiments. Active learning
should rather be seen as an approach for guiding the collection of
new data in such a way that it is maximally informative for ML,
than as a method for improving the models using existing data.
Although gathering new data, and making it findable, accessible,
interoperable and reusable (FAIR) is a very important task,[48] we
will here focus on another approach that can make a difference
with the data that we already have.

Adding more Information about the Data or the Task
As an alternative to utilizing the data better with transfer- or

multi-task learning, or gathering new data with active learning, we
might consider using additional information about the data or the
prediction task itself. The success of DL over expert systems is
rooted in the unbiased approach to learning. But when faced with
too little data, we have to re-evaluate.Why should we throw away
most of what we as chemists know about our problem or any ad-
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selectivities for the nucleophilic aromatic substitution reaction,[75]
and Zhao and co-workers showed that introduction of transition
state features increased the predictive performance when model-
ling activation energies also for enzymatic reactions.[76]While re-
action path calculations can be time-consuming, Grzybowski and
co-workers recently showed that information from approximate
transition states could be used to predict the facial selectivity of
Michael additions and Diels–Alder cycloadditions.[77] The calcu-
lations can also be accelerated by using semi-empirical methods,
as shown by Hartwig, Norrby and co-workers for iridium-cata-
lyzed borylation of C–H bonds reactions, leading to run-times
of only a few minutes per reaction.[78] Their resulting hybrid ML
model with mechanistic information achieved 100% accuracy on
site-selectivity prediction, outclassing highly skilled synthetic
chemists.

The downsides of descriptor approaches include requiring an
expert to choose appropriate descriptors that are then also specific
to a certain reaction. QM descriptors are also computationally
expensive and manually time-consuming to calculate, a problem

tive molecular field analysis (CoMFA), an approach originating in
drug design in which molecules are aligned in a box and steric and
electronic properties are calculated on a grid.[67,68] These descrip-
tors depend on the three-dimensional structure of the molecules,
but so-called topological or two-dimensional descriptors that only
dependonthemolecularconnectivityarealsoavailable(Fig.2a).[69]
Descriptors are normally calculated for reactants, but product de-
scriptors can also be calculated.[68,70,71]

Descriptor approaches have also been combined with mech-
anistic QM calculations of the reaction pathway (Fig. 2a).[72]
Perhaps the first study in this direction was by Sigman and Toste,
who included transition state descriptors to model the oxidative
amination of tetrahydroisoquinolines under chiral-anion phase-
transfer catalysis.[73] High-energy intermediates can also be infor-
mative, as shown, for example, by calculation of regioselectivities
in electrophilic aromatic substitution reactions by Norrby and co-
workers by including the energies of the σ complexes (Wheland
intermediates).[74] Buttar and co-workers used both ground state
and transition state descriptors to predict activation energies and
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that can partly be alleviated by automatic workflows,[79] descrip-
tor databases,[80] or by calculating themwithML approaches.[81,82]
An alternative way to incorporate quantum-chemical information
in a more general way is the so-called quantum machine learning
(QML) approach,[83,84] where molecular representations are cre-
ated based on two-, three-body and higher order interaction terms
inspired from quantummechanics.[85]Recently, Corminboeuf and
co-workers have developed QML reaction representations that do
not require adaptation for different reaction types.[71,86] We also
note that there is a rich literature on the use of descriptors for het-
erogeneous catalysis, including d-band theory,[87] linear scaling
relations and volcano plots.[88] We refer the interested reader to
some of the excellent reviews for further details.[89]

Themethods discussed so far make use ofmore traditionalML
approaches in combination with hand-picked descriptors.We will
now examine more modern DL methods where the methods of
choiceareGNNsbasedon themolecular connectivitygraph,ornat-
ural languagemodels such as Transformers, based on the SMILES
string representation of molecules and reactions (Fig. 1b).[90]
Whether working on molecular graphs or SMILES, recent inves-
tigations show close connections between GNNs and transform-
ers under the unifying umbrella of geometric deep learning.[91,92]
For periodic materials, architectures such as crystal graph con-
volutional neural networks[93] or periodic graph transformers[94]
have been developed. There is also a long history of applying
NNs in chemistry. A prominent example from 1990 is the predic-
tion of electrophilic aromatic substitution selectivity by scientists
from Upjohn using connection table representations and shallow
feed-forward NNs.[95,96] Modern deep NN models have proven
proficient at both retrosynthesis and forward reaction prediction
of different types.[2] In a similar application as the previous ex-
ample from Upjohn, Jensen and co-workers developed a multi-
task model for regioselectivity in C-H functionalization,[97] that
outperformed previous approaches based on quantum-chemical
calculations. In an elegant approach, Heid and Green developed
a GNN based on the condensed graph of reaction (CGR),[98,99]
which can be seen as a superposition of the reactant and products
graphs (Fig. 2b).[100] The model showed very good performance
on a range of quantitative reactivity tasks. Reymond, Laino and
co-workers used transformer models to predict reaction yields
(Fig. 2b), observing good performance on literature HTE datasets
but poorer performance on patent data, likely due to different data
homogeneity and quality.[101]Activation energies is another target
that was tackled by Green and co-workers for gas-phase isomeri-
zation reactions of small molecules (Fig. 2b).[102]

While pure DL models typically require many hundred or
thousands of data points, descriptor models have been used with
as little as 11 data points.[34] Although it is statistically question-
able whether conclusions based on models with so few data points
can really be trusted,[103] it seems clear also from other studies
that models based on well-chosen descriptors perform better in
the low-data regime than those having access to only molecu-
lar structural information.[75] One natural approach is to marry
both approaches and get the best of both worlds (Fig. 2c). This is
what Green, Jensen and co-workers[81] did by developing quan-
tum mechanics-augmented graph neural networks (QM-GNNs).
By incorporating traditional reactivity descriptors such as atomic
charges, Fukui indices andNMR chemical shifts into aGNNmod-
el, the performance increased significantly in the low-data regime
and the models generalized better to unseen regions of chemical
space as demonstrated by a scaffold split (Fig. 2c). To circumvent
the high cost of generating the descriptors with QM calculations,
the authors trainedNNs to predict them directly from the chemical
structure. Coley and Stuyver later applied the same architecture
to S

N
2 nucleophilic substitution and E2 elimination reactions.[104]

They showed that the models utilized descriptor information ac-
cording to ‘hard’ (e.g., atomic charges) and ‘soft’ (e.g., Fukui in-

dices) interactions from Pearson’s theory of hard and soft acids
and bases.[105] Studies by Balcells and co-workers[106] and Gomes
and co-workers[107] have explored adding QM information from
the natural bond orbital (NBO) theory[108] into GNNs. Recently,
Schneider and co-workers, including scientists from Roche, uti-
lized 2D and 3D GNNs for the prediction of binary reaction out-
come, yield and regioselectivity of late-stage borylation of drug-
like molecules.[109] Incorporating QM atomic charges into the
models failed to produce any significant improvement, although
the authors acknowledged that the iridium-catalyzed borylation
reaction that they modelled is mainly sensitive to steric rather than
electronic effects. These handful of studies indicate that there can
be a substantial value of including descriptor information in DL
models, although it remains to be seen which descriptors are most
informative and which predictions tasks benefit the most.

Building Auto-differentiable Physical Models
All modern DL frameworks are built on an automatic differ-

entiation (AD) engine that trains the NNs.[110] In practice, this is
usually done by automatic application of the familiar chain rule for
expressing the derivatives of composite functions. Neural network
models built on large datasets have achieved great accuracy for
predicting the energies of molecular systems. These models are
sometimes called neural network potentials (NNPs) or machine
learning interatomic potentials. Based on the pioneering work of
Behler andParinello,[111]numerousmodelshavebeenproposed.[112]
Arguably the most successful in molecular chemistry has been the
ANI family of models.[113] While the initial version[113] covered
only the chemical elements H, C, N and O, the later ANI-2x[114]
included also S, F, and Cl, and Schrödinger-ANI[115] expanded the
set to also include P. In the materials modelling field, 3D GNNs
such as GemNet[116] have shown promising performance on the
OC20 and OC22 datasets[117,118] for predicting absorption ener-
gies and geometries of small molecules on metal and oxide sur-
faces.Although this task is not directly related to catalytic activity,
absorption energies can later be correlated with energy barriers
through linear scaling relationships (Fig. 3a).[119]

Conventional NNPs do not work for modelling reactivity as
they are not trained on off-equilibrium data. Custom-made reac-
tive potentials can be constructed, but they are reaction specific.[120]
Very recently, Lubbers, Messerly, Smith and co-workers expand-
ed the ANI framework with an active learning scheme based on a
computational ‘nanoreactor’ (Fig. 3a).[121] They showed that the
resulting dataset covered a large part of reactive chemical space
and that the NNP, dubbed ANI-nr, could be used for applications
such as methane combustion or an in silico Miller-Urey experi-
ment. Development of further datasets including reactive geom-
etries will be key in expanding the utility of reactive NNPs.[122]
In spite of these promising advances, the current generation of
NNPs are limited by the use of pairwise potentials. Expanding the
potentials such as ANI-nr to additional elements beyond H, C, N
and O therefore entails enormous amounts of additional training
data for parametrization, a problem well-known from for exam-
ple density functional tight binding.[123] There is therefore a large
need of developing models which can circumvent these problems
and generalize well with less training data.

The same software tools that enable automatic differentiation
of NNs can also be used to make physical models differentiable
(Fig. 3b).[124] Initial work in this direction in chemistry has fo-
cused on the automatic calculation of higher-order derivatives for
quantum-chemical methods,[125–127] but recent developments have
significantly widened the scope. Once a physical model is coded
in an auto-differentiable way, it can be combined with NN compo-
nents to create hybrid models (Fig. 3b). Integrating traditional DL
with strong priors using differentiable physical models will likely
lead to better performance, data efficiency and generalization.
In a famous example, a team led by researchers from DeepMind
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somewhere between and .[137,138] Even though this
is far from the possible with pure NNPs, it may be good
enough to generate hundreds of thousands of datapoints for many
applications.

As examples of further applications,AD has been used to tune
the parameters of QML representations,[139] and it can also be uti-
lized for inverse design. Aspuru-Guzik and co-workers recently
used an auto-differentiable Hückel molecular orbital code to opti-
mize model parameters and perform inverse design by alchemical
gradient- based optimization of atom identity.[140] Ongoing work
with introducing automatic differentiation at the compiler lev-
el[141] will open possibilities for exploiting the many large legacy
codebases built up in science over the last decades.

Conclusions and Outlook
Models based on deep learning have demonstrated outstand-

ing performance for chemical problems given that sufficient train-
ing data on the order of thousands or millions of data points is
available. These amounts of data are accessible for a handful of
applications, such as protein structure prediction, but generally
datasets in chemistry are small, in the order of tens or hundreds
of data points. Expert-chosen descriptors or physical models are
traditionally used to model these datasets, but the resulting mod-
els do not scale as well with increasing dataset size compared to
deep learning. Recent developments show promising directions
or merging deep learning with descriptors and physical models.
Descriptors have been combined with graph neural networks for
reactivity prediction, and auto-differentiable implementations of
physical models have been merged with deep learning. The re-
sulting models are generally more data efficient than pure deep
learning and generalize better outside the chemical space of the
training data. Data efficiency is important when modelling the
small datasets found in chemistry, while good generalization is
crucial for the application of the models in inverse design and

showed that a machine learned density functional approximation
could extrapolate well beyond the training set and for example beat
standard functionals for reaction barriers heights.[27] In a similar
vein, Vinko and co-workers demonstrated that a NN approxima-
tion of the density functional could be trained with experimental
data from only eight diatomic molecules and generalize to larger
molecular systems.[26] Finding better approximations to the uni-
versal density functional is indeed one of the holy grails of com-
putational chemistry, that could allow more accurate simulations
of chemical reactivity.[28]

Despite these promising advances, a typical DFT calculation
still scales on the order of , where N

bf
is the

number of basis functions used to describe the system. Hybrid
approaches with much better scaling are needed to be competitive
with pure ML, that in favorable cases scales as where N

a
is the number of atoms in the system. This requirement is espe-
cially important for high-throughput virtual screening, reaction
network exploration[128] and generative models, where thousands
or millions of molecules need to be evaluated. The OrbNet model
fromManby,Miller and co-workers[129,130] uses atomic orbital fea-
tures from semi-empirical quantum chemistry to reduce the scal-
ing to .[131] Similarly, Tretiak and co-workers combined
semi-empirical methods with the hierarchically interacting par-
ticle neural network (HIP-NN) model and showed significantly
improved generalization compared to pure NN approaches.[132,133]
Yaron and co-workers implemented an auto-differentiable DFTB
model, learning the parameters of more classical functions rather
than using a NN.[134] Further speed-ups need to use simpler mod-
els such as physically informed force fields with scaling.
An example is the ReaxFF reactive force field[135] that was recent-
ly rewritten with differentiable programming to allowmuch faster
parametrization and easier introduction of new functional forms
into the force field.[136] Hybrid force field and quantum-chemical
approaches that incorporate some electronic effects have a scaling
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high-throughput virtual screening. We believe that these emerg-
ing methods are the first of a new generation of ML models in
chemistry, where prior chemical knowledge is incorporated to a
larger extent. The subsequent application of these more robust
and generalizable models would enable breakthroughs to create
chemical solutions to our societal problems.
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