
ArtificiAl intelligence in chemicAl reseArch CHIMIA 2023, 77, No.1/2 7

*Correspondence: Dr. L. M. Roch, E-Mail: loic@atinary.com

Atinary Technologies Sàrl, Lausanne, VD, Switzerland

How to Accelerate R&D and Optimize
Experiment Planning with Machine Learning
and Data Science

Daniel Pacheco Gutierrez, Linnea M. Folkmann, Hermann Tribukait, and Loïc M. Roch*

Abstract: Accelerating R&D is essential to address some of the challenges humanity is currently facing, such as
achieving global sustainability goals. Today’s Edisonian approach of trial-and-error still prevalent in R&D labs
takes up to two decades of fundamental and applied research for new materials to reach the market. Turning
around this situation calls for strategies to upgrade R&D and expedite innovation. By conducting smart experi-
ment planning that is data-driven and guided by AI/ML, researchers can more efficiently search through the com-
plex – often constrained – space of possible experiments and find the global optima much faster than with the
current approaches. Moreover, with digitized data management, researchers will be able to maximize the utility
of their data in the short and long terms with the aid of statistics, ML and visualization tools. In what follows, we
present a framework and key technologies to accelerate R&D and optimize experiment planning.
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1. Introduction
In recent years, the rapid advances in machine learning (ML)

and data science have led to a proliferation of new techniques for
optimizing experimental design and planning. In this article, we
propose a framework for leveraging these techniques to acceler-
ate research and development (R&D) and discovery in a variety
of fields. By utilizing artificial intelligence (AI) and ML algo-
rithms to analyze small to large datasets and identify patterns and
trends, researchers can more effectively plan experiments, leading
to faster and more efficient R&D and discovery. We discuss the
benefits of this approach and provide an overview of the key steps
involved in implementing it.

Accelerating R&D and discovery will also accelerate the tran-
sition to a sustainable circular economy.[1,2] The transition to a cir-
cular economy is an important goal for our society, as it will create
amore sustainable and resilient future.[3]Acircular economy is one
in which we reduce waste and maximize the use of resources, by
designing products and systems that can be used and reused over
and over again. This is in contrast to the linear economy[4] that we
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2. Today’s State-of-of-the-art Technologies Used in
Modern R&D Facilities

In the very first step for a successful experimental campaign,
researchers need to define the goals: What are the optimization
objectives? What are the key parameters?

Once these questions have been answered, the next step is to
pick an experiment planner to guide the optimization process.
Nowadays, modern R&D labs have adopted a variety of experi-
ment planning technologies. These include popular techniques
such as design of experiments (DoE), one-factor-at-a-time (OFAT)
and grid search or high-throughput experimentation (HTE).While
these approaches are systematic and have shown to be useful, they
require a vast amount of evaluations, they have difficulties han-
dling non-numerical data, and they also require important human
intervention and tuning to be successful. In Fig. 1 we briefly re-
view these approaches and list their main pitfalls.

2.1 Design of Experiments
Design of experiment (DoE, Fig. 1, panel A) is a systematic

approach to planning and conducting experiments, introduced
back in 1935, by Sir Ronald Fisher.[11,12] The goal of DoE is to
identify the factors that affect a particular response, and to deter-
mine the optimal levels of these factors in order to maximize or
minimize the response.[13]

In a DoE, the experimenter first identifies the factors that are
expected to affect the response, and then selects the levels at which
each factor will be tested. There are almost as many initial designs
as chemists, with the response surface methodology (RSM)[13,14]
and the Taguchi[15] methods being the most widely used. RSM is
a statistical approach that can be used to model the relationship
between inputs and outputs in order to identify optimal settings.
Taguchi methods are a set of techniques for experimental design
and data analysis that aim to minimize variability and maximize
quality. DoE allows researchers to draw conclusions about the fac-
tors that affect the response, and to make predictions about how
the response will behave in different conditions.

One of the main pitfalls of DoE is that it relies heavily on the
choice of the initial design. As a consequence, one might miss
important aspects and features of the response surface if the prior
assumption is violated. Typically, once the design is selected, ex-
periments are conducted following the said design layout, without
further refinement. Additionally, the number of experiments to
evaluate according to the design layout grows exponentially with
the number of parameters or design factors, making it an unsuit-
able method for most real use cases.

2.2 One-factor-at-a-time
One-factor-at-a-time (OFAT, Fig. 1, panel B) experimenta-

tion[16] is a common approach used in R&D settings. It is one of
the first strategies for designing experiments. The goal of OFAT
experimentation is to identify the effect of a single factor on a
response variable of interest. This is typically accomplished by
holding all other factors at some fixed level and systematically
varying the level of the factor of interest.While this approach may
seem straightforward, there are several potential pitfalls associ-
ated with OFAT experimentation.

First, OFAT experimentation can be very time consuming
and expensive if a large number of factors need to be considered.
Second, because only one factor is varied at a time, it can be dif-
ficult to isolate the effect of that factor from other confounding
factors. Finally, because each factor is considered in isolation,
OFAT experimentation does not provide any information about
potential interactions between factors, and thus does not guaran-
tee to locate the global optimum.

currently have, in which we extract resources, use them to create
products, and then dispose of those products after a ‘one-time’use.

However, in order tomake the transition to a circular economy,
we need to accelerate R&D and discovery in key areas, such as
energy storage and production, recycling, and waste valorization.
This is because many of the technologies and systems that we
need to support a circular economy either do not exist yet, or are
not yet mature enough for widespread adoption.

All in all, accelerating R&D and materials discovery is es-
sential for achieving global sustainability goals, such as those
outlined in the United Nations’ Sustainable Development Goals
(SDGs).[5] Moreover, the current energy crisis in Europe as a re-
sult of the war in Ukraine, and other geopolitical conflicts, as
well as global warming, make a faster transition to a sustainable
circular economy a high priority.

The challenge is that discovering and developing these break-
through materials needed to accelerate the transition to a sustain-
able and circular economy is a very slow and expensive process.
The current Edisonian approach of trial-and-error that is still
prevalent in R&D labs can take up to two decades of fundamental
and applied research[6] for new materials to reach the market.[4,7,8]
Simply put, we cannot afford to wait decades for these new mate-
rials to reach the market.

For the last decades, R&D productivity has been declining,
despite the huge advances in science and technology. This de-
cline, first diagnosed by Jack W. Scannell in 2012,[9] was named
‘Eroom’s law’,[10] also referred to as the ‘law of diminishing re-
turns for research and development’. It states that the productivity
of R&D decreases exponentially over time. However, the exact
cause of this decline is not well understood.[79]

One possible explanation for the decline in R&D productiv-
ity is the increasing complexity of the challenges that research-
ers are facing. The low hanging fruits of R&D have already been
picked and the R&D challenges are growing in complexity. In
addition, as more data is available, we are hitting the limits of the
human mind to process and understand large, multi-dimensional
data.

To this growing complexity we would add that R&D process-
es are outdated and are often performed manually, which makes
them hard to replicate, slow and expensive.

Turning around this situation calls for strategies to upgrade
R&D and expedite innovation. We believe that part of the solu-
tion to Eroom’s Law is upgrading and modernizing R&D. First,
research labs need to digitize R&D to promote and enhance col-
laboration and information sharing. Second, R&D labs also need
to embrace data-centric processes guided by statistics,ML andAI.
For example, AI and ML can help speed up R&D and materials
discovery by:
1. systematically and automatically screening for new materials

that meet the necessary criteria;
2. optimizing the experimental designs and helping operators

and technicians navigate the large materials space;
3. shedding light on the data collected and providing insights on

the applications at hand.
In the following sections, we will review current technolo-

gies used in modern R&D facilities and list the associated chal-
lenges with these technologies. We then present howAI and ML
can be used to plan experiments and to shed light on the output
results to extract the key information from the data collected.
By conducting smart experiment planning that is data-driven
and guided by AI/ML, researchers can more efficiently search
through the space of possible experiments and find the global
optima much faster than with the current approaches and tech-
niques, such as Design of Experiment (DoE), one-factor-at-a-
time (OFAT) and grid search or high-throughput experimenta-
tion (HTE).
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the number of objective evaluations. BO is a method often applied
to black-box problems for global optimization.

BO optimization algorithms suggest the most promising ex-
periments to run next to achieve optimization objectives accord-
ing to various models. Typically, BO is very well suited to acceler-
ate the traditional design – build – test – learn cycle, referred to as
closed-loop optimization as shown in Fig. 3.

BO is a powerful technique for optimizing complex functions,
and has been shown to be particularly effective for optimizing
functions with many local optima. BO is a derivative-free optimi-

2.3 High-throughput Experimentation
High-throughput experimentation (HTE, Fig. 1, panel C), also

referred to as grid search, is a popular and widely used technique
in R&D for finding the best combination of parameters for op-
timizing a given model. It works by systematically evaluating
combinations of parameters over a grid of possible values, al-
lowing for an exhaustive exploration of all possible parameter
combinations.

The main pitfall of HTE is that it can be experimentally ex-
pensive as the number of combinations increases exponentially
with the number of parameters. Often, this is referred to as the
curse of dimensionality. Additionally, the results of grid search
can be sensitive to the choice of parameter values, and it is dif-
ficult to determine the best parameter values without a thorough
understanding of the problem.

3. Reversing Eroom’s Law: ML as Next-generation
Experiment Planning

One of the ways to achieve faster development cycles is by
leveraging adaptive methods that can learn from experiments in
real time, such as those offered by ML for materials science.[17,18]
Compared to traditional approaches that follow a ‘blind recipe’
ML-driven methods attempt to perform experiments either where
there is little information (exploration) or where better results are
likely to occur (exploitation). Hereafter, we describe the require-
ments for ML frameworks to allow the generation of new designs
based on existing data whereby a multi-objective function is opti-
mized with input variables that can be continuous, discrete, and/
or categorical (Fig. 2).

3.1 Global Optimization with ML
As with all optimization problems, one also needs a strategy on

how to avoid getting stuck in local minima or maxima, and how
to explore the design space efficiently to find the global optima.
Computationally involved methods such as particle swarm,[19,20]
support vector machine, simulated annealing,[21,22] or evolutionary
strategies[23,24] can account for the results from recent experiments
to make informed decisions about the next conditions. Bayesian
optimization (BO)[25–27] recently gained traction as a promising al-
ternative. BO is known to reduce redundancy in the proposed con-
ditions, thereby maximizing domain knowledge while minimizing

Fig. 1. Illustrations of today’s state-of-the-art methodologies to plan experiments used in modern R&D facilities across life science, chemistry, mate-
rials science, biotechnology and pharma. These methodologies include: design of experiments (DoE, panel A), one-factor-at-a-time (OFAT, panel B)
and high-throughput experiment (HTE, panel C). The red cross highlights the global optimum, the blue crosses shows the initial set of experiments
and the orange crosses the first refinement of experiment (relevant only for DoE and OFAT).

Fig. 2. Illustration of ML-driven methodologies for next-generation ex-
periment planning. The red cross highlights the global optimum and the
blue crosses shows the experiments suggested by the ML algorithm
based on the information gathered throughout the optimization process.
Some experiments are performed in unknown regions of the search
space (exploration), but a higher density is present in the identified op-
timal regions of the search space (exploitation) illustrating the tradeoff
used by ML-driven methods.
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Felton et al. in 2021. The Falcon algorithms are compared
against GPyOpt[38] and Dragonfly,[39] which are popular open-
source Bayesian optimization libraries for optimizing black-box
functions.

The two benchmarks (Benchmark A and B, Fig. 4) are repre-
sentations of typical chemical reaction optimizations carried out
in R&D laboratories where the goal is to find the experimental
conditions that maximize properties (or measurements) such as
the yield, selectivity or conversion.

Benchmark A (Fig. 4, top panel) corresponds to a simu-
lated nucleophilic aromatic substitution reaction performed in
a plug-flow reactor. The model predicts the space-time-yield
(kg m–3 h–1) as a function of the residence time, inlet concentration
of 2,4-dinitrofluorobenzene, reactor temperature and equivalents
of pyrrolidine. It is a mechanistic model that uses experimental
reaction kinetics and mass balance differential equations as the
starting point.

Benchmark B (Fig. 4, bottom panel) corresponds to a
Reizman-Suzuki cross-coupling reaction simulation. The model
predicts the yield as a function of the catalyst type (8 options),
the reactor residence time, the temperature and the catalyst load-
ing. The model is a regression function fit to experimental data as
described by Felton et al.[40]

Benchmarks A and B show that adaptive strategies per-
form much better than Random Search. We also observe that
FalconGPBOandFalconDNGOconverge quicker than other com-
peting methods. For both benchmarkA and B, only FalconGPBO
reaches the global optimum on average within the allocated bud-
get of 100 iterations. For benchmark A, FalconGPBO requires

zation method that uses a probabilistic model to guide the search
for the global optimum. The key idea is to construct a probabilistic
model to the past observations (surrogate model), and then use a
selection policy (acquisition function) to decide which point to
evaluate next. The acquisition function determines the tradeoff
exploration and exploitation with respect to the surrogate model.
The new evaluated points are then used to update the model, and
the process is repeated until convergence.

The success of BO was reported in a variety of applications
across chemistry, materials science and life science. For example,
BO was used to accelerate the screening of molecules for organic
photovoltaics,[28] discover non-fullerene acceptor candidates for
organic photovoltaics,[29] discover new drug-related materials,[30]
speed up synthesis planning and reaction optimization,[31] to de-
sign new photocatalyst[32] or to discover new battery electrolyte[33]
to name but a few.

Recently, Atinary Technologies[34] launched its flagship BO
algorithm: Falcon. Falcon is a global optimization strategy that
can solve optimization problems including continuous, discrete
and/or categorical variables with or without physicochemical
descriptors, as well as batch-constrained optimization. Falcon
comes with three flavors of surrogate models and acquisition
functions (AF).
1. Falcon Light and its proprietary surrogate andAFwhich allows

an explicit trade-off between exploration and exploitation.
2. Falcon GPBO, which uses Gaussian Process[35,36] Bayesian

Optimization as a surrogate model. Typically, GPBO is well
suited for optimization problems that can potentially be solved
with a relatively small number of experiments. However,
GPBO scales cubically with the number of experiments. Thus,
the computational cost can potentially be very high if used in
complex simulation cases.

3. Falcon DNGO (Deep Network for Global Optimization[37]
as a surrogate model) maintains desirable properties of the
Gaussian Processes (e.g. management of uncertainty) while
improving its scalability. Specifically, unlike a standard
Gaussian process, DNGO scales linearly with the number of
evaluations or experiments. Falcon DNGO creates a robust,
scalable, and effective Bayesian optimization system that gen-
eralizes across many global optimization problems, for a suit-
able set of design choices.

3.2 Quantifying Performance of Global ML Algorithms
Below we report a concise benchmark study on two real-

case experiments that feature numerical and categorical param-
eters. Fig. 4 compares the convergence of different optimiza-
tion algorithms on simulated chemical reactions, referred to as
digital twins. These digital twins include one cross-coupling
reaction (Reizman-Suzuki) and one nucleophilic aromatic
substitution reaction. The digital twins were developed by

Fig. 4. Chemical reaction digital twin optimization benchmarks: Each
figure reports the best merit over 30 campaigns (different starting condi-
tions) according to six different experiment planning strategies: Random
search, Gpyopt, Dragonfly, FalconGPBO, FalconDNGO and Falcon.
Benchmark A only has numerical parameters and benchmark B has cat-
egorical parameters, which are not readily-supported by GPyOpt. The
digital twins were initially developed by Felton et al.[40]

Fig. 3. Representation of the data-driven closed-loop optimization for
ML driven experiment planning.
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about 16 iterations on average to converge and reach the opti-
mum set of parameters. In comparison, FalconDNGO requires
about 10 iterations to converge, but the mean-best found does
not get to reach the global optimum. GPyOpt is the third best,
requiring about 25 iterations to converge. In contrast, Dragonfly
converges after 50 iterations. A similar ranking is observed for
benchmark B except that Falcon-Light occupies the third place.
Apart from the convergence rate, it is also possible to compare
the strategies with respect to their overall best-found value af-
ter 100 iterations: FalconGPBO, FalconDNGO and FalconLight
are the closest to benchmark B’s global optimum respectively.
As benchmark B features categorical variables, GPyOpt was
not included as it does not readily support this parameter type.
Categorical variables are a challenge for ML algorithms as they
lack order and cannot be represented by numerical values. This
makes it difficult for ML algorithms to interpret and use cat-
egorical data effectively.

Recently, we reported a comparison of DoE versus BO in the
optimization of perovskite solar cells’ efficiency.[41] In this proj-
ect, Atinary’s proprietary BO algorithm, Falcon, needed to ex-
plore less than 10% of the total number of possible combinations
to hit the optimal conditions. Falcon maximized the solar cells’
efficiency in only a fraction of the experiments and increased pro-
ductivity by 45%, compared to DoE.

Another important aspect for R&D to fully embrace ML al-
gorithms is to ensure the algorithm’s robustness towards noise in
the experiments.[42,43]Robustness significantly affects the location
of the optima and the exploration of the search space. For illustra-
tion purposes, below we report another succinct benchmark study
demonstrating the impact of noise on four selectedML optimizers
offered onAtinary SDLabs: Random Search, HTE, FalconDNGO
and FalconGPBO.

In the examples that follow, we use Dejong[44] and Levy[45]
(Fig. 5) analytical functions to demonstrate the robustness of
state-of-the-art technologies used in modern R&D labs and BO.
The noisy function is constructed by adding a random noise drawn
from a Gaussian distribution to each measurement (evaluated
Benchmark function value). The Gaussian distribution has mean
equal to zero and a standard deviation (scale) of s% of the noise-
less function value, where s is {0, 5, 10, 15, 30}. The noise level
in Fig. 6 below refers to this standard deviation of this Gaussian
distribution. For each surface, Fig. 6 shows the minimum noise-
free merit (best found) after 50 noisy function evaluations.

Not surprisingly, the performance of grid search or HTE and
Random Search is independent of the noise level, as they both
follow a random sampling strategy. In both cases, the optimizer
is not dependent on the value of prior observations. In sharp con-
trast, Fig. 6 shows that the performance of the BOML algorithms
– FalconGPBO and FalconDNGO – varies with the level of noise
in the measurements. Both BO optimizers learn from previous
experiments. However, the more noisy the measurements are, the
more challenging it is for these optimizers to find a parameter
region near the optimal function value.

Even at a 30% noise level in the Dejong function, both
FalconGPBO and FalconDNGO still perform significantly better
thanHTEandRandomSearch.Using themorecomplicatedsurface
with the Levy function, the mean performance of FalconDNGO
is constant with increasing noise, despite the noise dependance.
Moreover, the performance of the ML optimizer FalconDNGO
increases going from 0% to 10% noise level. This artifact has
already been reported in earlier studies: adding random Gaussian
noise to the desired signal during training of deep neural networks
– like the surrogate model of FalconDNGO – helps avoid overfit-
ting to the observations and improves the optimization perfor-

Fig. 5. Illustration of the 2D
Dejong (left) and Levy (right)
benchmark functions. Both func-
tions have a global minimum at
f(x1,x2) = f(0;0) = 0.

Fig. 6. Minimum merit of the
noiseless function after 50 itera-
tions of learning as a function of
the scale of the Gaussian noise
in the noisy measurements (left:
1D Dejong function and right: 1D
Levy function). Each data point is
the mean of 1,000 runs initialized
with different random starting
points. The vertical lines on each
data point show the error bars.
For some data points the error
bar is smaller than the point. The
black horizontal dotted line marks
the optimal function value.



12 CHIMIA 2023, 77, No 1/2 ArtificiAl intelligence in chemicAl reseArch

constraints are inefficient and may choose parameter points that
are outside the feasible regions.

Recently, we reported a new ML algorithm, Atinary™
Emmental, that allows users to add a set of constraints in optimi-
zation problems. Emmental uses the constraints to define the fea-
sible regions in the parameter space, and avoid the non-feasible re-
gions when solving the optimization problem (Fig. 8). Emmental
is compatible with Atinary’s proprietary suite of ML algorithms
available on SDLabs, and is available through the SDLabs graph-
ical user interface (GUI) or application programming interface
(API) or software development kit (SDK).

Compared to popular Bayesian optimization algorithms, such
as GPyOpt or Botorch,[57] Emmental can handle a broader variety
of non-linear optimization problems with multiple parameters and
constraints. Specifically, Emmental supports constrained optimi-
zation problems involving continuous, discrete and/or categorical
parameters in combination with the following constraint types:
(i) Exclusion constraints, which specify ranges of intermedi-
ate values that continuous/discrete parameters must avoid; (ii)
Conditional-exclusion constraints, which define relationships be-
tween multiple parameters that are to be avoided; (iii) Inequality
and equality constraints, which indicate linear and non-linear rela-
tions between parameters.

Atinary Falcon and Atinary Emmental, together with a suite
of open-source ML algorithms, are made available through
Atinary’s no-code ML platform SDLabs. The platform allows
users to define their experiments and start planning experiments
via either its GUI or its API/SDK. Fig. 9 illustrates these means
of interactions.

4. The Importance of Data Interpretability
Not only is it important for theML algorithm and optimization

approach to find the local and global optima, but the ML algo-
rithm also needs to maximize knowledge acquisition in order for
data to be useful and interpretable. TheML optimizer must be able
to interpret the data and draw conclusions and make predictions
based on that data. The integration of data science with chemistry
andmaterials science is of utmost importance to further accelerate
discovery and innovation and to speed up the transition towards
sustainable manufacturing.[58–60]

There are many factors that affect the interpretability of data.
The most important factor is the quality of the data itself. If the
data is of poor quality, it will be very difficult to interpret. The
second factor is the amount of data available. The more data there
is, the easier it will be to interpret. Finally, the methods used to
analyze and visualize the data can also affect its interpretability.[58]
Atinary SDLabs allows users to interact with their data through
its ‘Analytics’ module, which provides a menu of eight plots to
facilitate and streamline data interpretability.

mance.[46,47] This behavior was seen to be particularly effective
for complex optimization landscapes where adding noise can help
overcome local minima.

These plots also show how simple models such as grid search
(or HTE) can be quite powerful at low-dimensional problems (see
right panel, Fig. 6). The benchmarks above were done with the 1D
version of the functions, which gave very few grid-points to evalu-
ate. The benchmark below shows the performance of the same al-
gorithms with functions that have increasingly more dimensions.

Fig. 7 shows that for both synthetic functions – Dejong (left)
and Levy (right) – the ML optimizers perform consistently better
than grid and random-search as a function of increasing dimen-
sionality. While the random search and HTE approaches might
be suitable for simple problems, most real-world problems will
require smarter strategies that leverage the learned information.

3.3 Beyond Global Optimization
To further speed up discovery, it is of utmost importance to

develop accurate transfer learning methods that can leverage
pre-existing knowledge and databases. Efficient transfer learning
strategies require that only the relevant information is extracted
from pre-existing experimental results. This will allow the gen-
eration of ‘data-driven chemical intuition’ that can be generalized
and used in new applications. Such a transfer learning approach
would allow researchers to construct informative priors for new
applications based on results from other applications.

These transfer-learning methods need to be an integral part of
the closed-loop optimization process. Importantly, these methods
should (i) be method or surrogate agnostic, (ii) select automati-
cally useful sources of prior information and (iii) head start op-
timization to explore only promising regions without biasing the
search.

Several methods for transfer learning have been published in
theML literature. These include a compound acquisition function,
multi-task Gaussian processes[48–52] from BO,[53] shape and shrink
the initial search space a priori to replace initial sampling, or
meta-learning and few-shot learning.[54] Recently, we have dem-
onstrated that our transfer-learning algorithm − Atinary SeMOpt
− can systematically improve the knowledge extracted from prior
information by combining neural processes for meta-learning
with a compound acquisition function.[55,56]

Last but not least, real-world optimization problems are very
often limited by multiple constraints. For example, the optimiza-
tion of a chemical process may exhibit known physical and/or
manufacturing constraints. These constraints have a direct impact
on the parameter space of the optimization problem by effectively
reducing its volume to only the subset of points that fulfill all
the constraints (i.e. the feasible regions). Therefore, optimization
techniques that lack the ability to incorporate this knowledge or

Fig. 7. Dimension scalabil-
ity benchmark: Minimum merit
reached after 500 iterations of
learning as a function of the num-
ber of parameters to optimize.
Each data point is the mean of
10 runs initialized with different
random seeds. The vertical lines
on each data point show the error
bars. For some data points the
error bar is smaller than the point.
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The importance of interpretability cannot be overstated. Data
that cannot be interpreted is effectively useless. Interpretability is
essential for researchers and businesses to be able to draw useful
conclusions and make informed decisions. Interpretability helps
scientists, engineers, and other professionals to make sense of
data, allowing them to identify trends and anomalies in the data
and take appropriate action.[59]

Sensitivity analysis is one such data interpretability tool. It
consists of studying the effect that input variability has on the out-
put variables. Through sensitivity analysis,[61,62] researchers can
identify the most influential parameters in a system. It helps to
identify which inputs are the most important in a model, and can
be used to determine the optimal set of parameters and to identify
areas that need further investigation. Sensitivity analysis can also
be used to identify potential areas of model uncertainty, which can
help to improve the accuracy and reliability of a model. This is a
crucial element in the understanding of an application in order to
refine the search space without affecting the level of quality, safety
and efficiency in the process at hand.

Another critical aspect of enforcing data interpretability is the
ability to construct ‘maps’ towards design control. Through ad-
vanced methods for dimensionality reduction, one can represent
high dimensional space into a human readable format to assure
that the application meets user needs, intended uses, and specified
requirements. The figure below (Fig. 10) shows an example of a
nine-dimensional parameter space reduced to a two-dimensional
space. The color scheme displays the evaluation of a particular
ML regression model as a function of the input parameters. The
figure displays the nonlinear nature of what the ML model ‘sees’,
with its local minima/maxima and valleys.

Apart from visualizing the regression models, it is also pos-
sible to use these models to simulate a given process. This simu-
lator is known as a ‘digital twin’ which can serve as the platform

Fig. 8. Representation of Atinary™ Emmental for constrained optimiza-
tion.

Fig. 9. Screenshots of the
Graphical User Interface (GUI,
top) and application programming
interface definition (API, bottom)
of Atinary SDLabs.
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to perform further digital experiments, benchmarks and calcula-
tions. Such digital twins can serve as proxies to real experiments,
and can help users better leverage further R&D efforts.

The path to go beyond data interpretability and increase the
adoption of data infrastructures to further maximize value ex-
traction from the data is enumerated by the FAIR data principle,
which is a set of guidelines for how data should be managed and
shared.[63] ‘FAIR’ stands for Findable, Accessible, Interoperable,
and Reusable, and it refers to the four guiding principles for ef-
fective data management and sharing:
– Findable requires that data should be discoverable, usually

through a searchable repository, and that its metadata associ-
ated with the data are sufficient for other users to understand
its context and potential uses.

– Accessibility means that data should be available in a format
that is open and machine-readable, and should have appropri-
ate licenses to ensure that the data can be used without any
legal restrictions.

– Interoperability requires that data be structured and formatted
in such a way that it can be accessed and used in combination
with other data sources.

– Reusability means that data should be formatted in a way that
makes it easy to be used for a variety of purposes.

The FAIR data principle is becoming increasingly important.
It serves as the foundation of effective data management and
sharing, ultimately allowing data to reach its fullest potential.
Such a common communication stream is crucial at all levels to
streamline sharing massive amounts of data. Although the FAIR
principle establishes the foundation towards data management
and sharing, one of the challenges lies in the importance for the
scientific community to develop standards in order to maximize
participation and adoption of new data infrastructure.[58]

5. The Self-driving Labs: Integrated Platform where
Cutting-edge Technologies Meet

Self-driving labs™ are next-generation R&D labs. They le-
verage automated equipment along with the power of AI and ML
to efficiently identify target candidate materials/molecules, in a
closed-loop fashion. They have the potential to significantly im-
prove the speed and accuracy of scientific experimentation and
data collection, and revolutionize the discovery of new materi-
als.[64–67]

By integrating the latest technological innovations in auto-
mation, robotics and computer science with current approaches
in chemistry, materials synthesis and characterization, self-
driving labs will act as a catalyst for revolutionizing the way re-
search and development is conducted in both industry and aca-

demia.[33,68–75] The use of self-driving labs can also lead to faster
and more efficient solutions to global challenges, helping to
achieve the United Nations SDGs. However, these labs are still in
their infancy and need to be more widely adopted in order to fully
realize their potential.

However, on the hardware front, standardization – which is
essential to embrace new technologies – is still a challenge as each
laboratory may have different requirements for its operations.
Various frameworks, such as SiLA, provide a standard framework
for the integration of laboratory instruments and data, enabling
the sharing and interoperability of laboratory data and processes.
Such frameworks would catalyze the development, deployment,
and maintenance of automated laboratory systems.

One of the key advantages of self-driving labs is that they can
significantly improve the speed and accuracy of scientific experi-
mentation.[76,77] By automating many of the tedious and repetitive
tasks involved in research, these labs can help researchers focus
on more complex and innovative work. Additionally, the use of
AI and ML technology can help identify patterns and trends that
might not be immediately apparent to human researchers, leading
to new insights and discoveries.[76]

Self-driving labs have the potential to accelerate and revolu-
tionize the discovery of new materials, which is essential for ad-
vancing many fields of science and technology.[78] By automating
the process of materials synthesis and characterization, these labs
can explore a wider range of potential materials more quickly
and efficiently. This could lead to the development of new and
improved materials for use in a wide range of applications, from
renewable energy to medical treatments.

It is up to the scientific community to take the lead in ad-
vancing the development and deployment of self-driving labs in
order to tackle the world’s most pressing problems and work to-
wards achieving the SDGs. This will require collaboration among
all players in academia, industry, governments and society as a
whole. Global challenges require global actions and global solu-
tions.

6. Conclusions and Outlook
The convergence of key technologies, such as artificial intel-

ligence, machine learning, robotics and data science enables a
drastic reduction in the time and cost necessary to identify new
molecules, materials and process parameters compared to tradi-
tional trial-and-error approaches.

The use of advanced tools such as Bayesian optimization,
transfer learning, constrained optimization, and data science can
help to optimize experiment planning and accelerate R&D and
discovery of advanced materials and molecules in a number of
ways. Machine learning algorithms can help identify patterns and

Fig. 10. Interpretation of the ap-
plication at hand from the ML al-
gorithm. Dimensionality reduction
from 6D to 2D towards design
control for process scale-up.
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trends in data that might not be immediately apparent to human
researchers. This can enable researchers to make better and more
informed decisions about how to design and conduct experiments,
leading to better results and more accurate data. Additionally, the
use of machine learning algorithms can help explore a larger piece
of the vast and complex materials and molecular space that has
not been explored yet, leading to new and unexpected insights.

However, to successfully deployAI/ML in R&D labs, ML ex-
perts, lab scientists and domain experts must jointly define achiev-
able use cases where the applications of ML can be used in real
experiments. Such ML technology needs to be tested or bench-
marked alongside the existing technology it aims to replace or
complement. This, in order to demonstrate that ML can improve
the discovery and development process in the industry, while also
lowering failure rates and costs.

Self-driving labs, also referred to as materials acceleration
platforms or autonomous labs, are a new type of R&D labora-
tories that fully integrate these tools and augment researchers to
execute data-driven experimentation. Augmenting researchers
with the power of these technologies and automating many of
the tedious and repetitive tasks involved in experiment planning
and execution, allows researchers to focus on more complex and
innovative work.

Overall, the integration of state-of-the-art technologies into
the R&D process can significantly accelerate the pace of scien-
tific research and drive the development of new materials and
molecules, as well as new technologies that can address global
challenges, such as climate change, energy poverty, and the cir-
cular economy. By leveraging the power of these technologies,
researchers can more quickly and efficiently identify solutions to
some of the world’s most pressing problems, helping to create a
more sustainable and equitable future for all.
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